簡易檢索 / 詳目顯示

研究生: 陳天偉
Chen, Tien-Wei
論文名稱: 應用纖維素酶生產菌及耐高溫酵母發酵咖啡果殼生產生質乙醇之研究
Study on using cellulase producing strains and thermotolerant yeast to ferment coffee husk to produce bioethanol
指導教授: 邱秋霞
Chiu, Chiu-Hsia
郭嘉信
Guo, Jia-Hsin
學位類別: 碩士
Master
系所名稱: 農學院 - 食品科學系所
Department of Food Science
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 123
中文關鍵詞: 咖啡果殼纖維素酶耐高溫酵母生質酒精
外文關鍵詞: Coffee husk, Cellulase, Thermotolerant yeast, Bioethanol
DOI URL: http://doi.org/10.6346/NPUST202200365
相關次數: 點閱:53下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 咖啡為全球最受歡迎的飲料之一,為僅次於石油之第二大貿易商品,
    每年於全世界之產量約為 163.4億磅。然而於咖啡豆處理過程中所產生之
    咖啡 果殼 (coffee husk) 屬於一種木質纖維素之農業廢棄物,可用來作為
    生產生質酒精之原料,但其主要由纖維素、半纖維素及木質素所組成,多
    半不被利用或不易被降解。因此本研究之目的為篩選出具纖維素酶之微
    生物將咖啡 果殼 中之纖維素分解成可發酵醣,再應用自篩之耐高溫酵母
    將其發酵並生成生質酒精。本研究自落葉、土壤及空氣中分離出 40株菌
    株,其編號分別為 L1-L18、 S1-S18、 AD1-AD4以及 4株實驗室保存菌株
    (BM、 BL、 BT及 並以剛果紅染色試驗篩選 是否具有分解纖維素之
    能力。結果顯示,菌株 L7、 L9、 AD1、 AD3、 BM、 BL、 BT及 PC具有
    纖維素分解能力,其中 菌株 AD1及 AD3具有較佳之分解能力,其透明環
    大小 分別為 34.50±3.54 mm及 27.80±3.89 mm。後續再將具有纖維素分解
    能力之菌株接種於含 1%CMC之生長培養基中,並測定其內切葡聚醣酶
    活性 (Carboxymethyl cellulase assay for endoglucanase, CMCase) 及總纖維
    素酶 活性 (Filter paper assay for cellulase, FPase)。結果顯示, 菌株 AD1及
    AD3具有 最 高之 CMCase分別為 0.13 U/mL及 0.12 U/mL 與最高之 FPase分別為 2.41 U/mL及 2.13 U/mL。另外,自人體糞便中篩選出 1株 (T14) 以及蜜餞中篩選出 2株 (1-6及 2-6) 可於 40℃生長之耐高溫酵母 將其
    以 Einhorn’s發酵管進行葡萄糖發酵能力試驗及乙醇耐受性試驗 。 其中酵
    母菌 T14為發酵能力及耐乙醇能力較佳之菌株,其產氣量可達 21.50±3.54 mL,並可耐受 10%之乙醇濃度。 之後 將 菌株 AD1、 AD3及 T14進行菌
    種鑑定,根據鑑定之結果,將菌株 AD1及 AD3命名為 Bacillus pseudomycoides AD1及 Bacillus pseudomycoides AD3,菌株 T14命名為
    Candida sp. T14。 並 測定 菌株 AD1及 AD3所生產之 胞外纖維素酶 之 pH值 及溫度穩定性 以及於預處理過後之咖啡果殼 可 獲得之 還原醣 含量 ,其
    結果顯示, 在 pH值 方面 菌株 AD1及 AD3於 pH 4.8之 FPase顯著高於其
    他 pH值 分別為 1.63 U/mL及 1.64 U/mL 在溫度方面則是於 70℃有較
    好之 FPase,分別為 1.72 U/mL及 1.84 U/mL;而在 還原醣 含量方面,菌
    株 AD1於第 20小時有最高之 還原醣含量 1.17 g/L,菌株 AD3則是於第
    12小時有 最高之還原醣含量 0.89 g/L,根據還原醣含量之結果選定菌株
    II
    AD1作為酵素處理咖啡果殼之菌株作為酵素處理咖啡果殼之菌株。。接著以反應曲面法之接著以反應曲面法之Box-Behnken設計設計探討發酵咖啡果殼生產生質乙醇之最適條件,探討發酵咖啡果殼生產生質乙醇之最適條件,結果顯示,結果顯示,咖啡果殼與咖啡果殼與NaOH以以3:10之之比例進行比例進行預預處理處理、、添加添加5%胞胞外外纖維素酶及纖維素酶及接種接種2%酵母酵母菌接種量菌接種量可獲得最好之生質乙醇含量。未來可獲得最好之生質乙醇含量。未來可應用可應用自篩之菌株自篩之菌株Bacillus pseudomycoides AD1及及Candida sp. T14擴大發酵咖啡果殼並生產生質乙擴大發酵咖啡果殼並生產生質乙醇,除可醇,除可增加增加咖啡果殼咖啡果殼之之附加附加價值,也可減少化石燃料之使用,以減緩全價值,也可減少化石燃料之使用,以減緩全球暖化之問題。球暖化之問題。

    Coffee is one of the most popular beverages in the world and the second most traded commodity after petroleum, with an annual worldwide production of approximately 16.34 billion pounds. However, the coffee husk produced in the process of coffee bean processing belongs to a kind of lignocellulose agricultural waste, which can be used as the raw material for the production of bioethanol, but it is mainly composed of cellulose, hemicellulose and lignin Most of them are not used or not easily degraded. Therefore, the purpose of this study is to screen out microorganisms with cellulase to decompose cellulose in coffee husks into fermentable sugars, and then use self-screened thermotolerant yeast to produce bioethanol. In this study, 40 strains were isolated from fallen leaves, soil and air, numbered L1-L18, S1-S18, AD1-AD4 and 4 laboratory-preserved strains (BM, BL, BT and PC), and use Congo Red staining test to screen whether it has the ability to decompose cellulose. The results showed that strains L7, L9, AD1, AD3, BM, BL, BT and PC had cellulolytic ability, among which strains AD1 and AD3 had better ability to decompose, and their clear zone were 34.50±3.54 mm and 27.80±3.89 mm. Subsequently, the cellulolytic strains were inoculated into a growth medium containing 1% CMC, and their endoglucanase activity (CMCase) and total cellulase activity (FPase) were determined. The results showed that strains AD1 and AD3 had the highest CMCase of 0.13 U/mL and 0.12 U/mL, respectively; and the highest FPase of 2.41 U/mL and 2.13 U/mL, respectively. In addition, 1 strain (T14) was screened from human feces and 2 strains (1-6 and 2-6) were selected from the preserved fruit. The thermotolerant yeast that can grow at 40°C were tested for glucose fermentation ability in Einhorn's fermentation tube and ethanol tolerance test. Among them, yeast T14 is a strain with better fermentation ability and ethanol tolerance, its gas production can reach 21.50±3.54 mL, and it can tolerate 10% ethanol concentration. Then the strains AD1, AD3 and T14 were identified. According to the identification results, the strains AD1 and AD3 were named Bacillus pseudomycoides AD1 and Bacillus pseudomycoides AD3, and the strain T14 was named Candida sp. T14. The pH value stability
    IV
    and temperature stability of the extracellular cellulase produced by the strains AD1 and AD3 and the reducing sugar content available in the coffee husks after pretreatment were determined. The results showed that the FPase of strains AD1 and AD3 at pH 4.8 was significantly higher than other pH values, 1.63 U/mL and 1.64 U/mL, respectively; in terms of temperature, it had better FPase at 70°C, 1.72 U/mL and 1.84 U/mL, respectively; and In terms of reducing sugar content, strain AD1 had the highest reducing sugar content of 1.17 g/L at the 20 hours, and strain AD3 had the highest reducing sugar content of 0.89 g/L at the 12 hours. According to the results of reducing sugar content, strains were selected AD1 as an enzyme-treated strain of coffee husks. Then, the Box-Behnken design of the reaction surface method was used to explore the optimal conditions for fermenting coffee husks to produce bioethanol. The results showed that the ratio 3:10 of coffee husk to NaOH treatment, the 5% of extracellular cellulase added, and the 2% of yeast inoculated can obtain the best biomass ethanol content. In the future, the self-screened strains Bacillus pseudomycoides AD1 and Candida sp. T14 can be used to expand the fermentation of coffee husks and produce bioethanol, which can not only increase the value of coffee husks, but also reduce the use of fossil fuels to alleviate the problem of global warming .

    中文摘要 I
    Abstract III
    謝誌 V
    目錄 VI
    圖目錄 X
    表目錄 XII
    1. 前言 1
    2. 文獻回顧 3
    2.1 生質能源之簡介 3
    2.1.1 生質柴油 5
    2.1.2 生質乙醇 5
    2.1.3 生質氫 8
    2.2 咖啡之簡介 8
    2.2.1 咖啡之加工方法 10
    2.2.2 咖啡加工後之副產物 11
    2.2.2.1 咖啡果殼 (Coffee husk) 11
    2.2.2.2 咖啡果肉 (Coffee pulp) 11
    2.2.2.3 銀皮 (Silver skin) 14
    2.2.2.4 咖啡渣 (Spent coffee grounds) 14
    2.3 木質纖維素 14
    2.3.1 纖維素 (Cellulose) 16
    2.3.2 半纖維素 (Hemicellulose) 16
    2.3.3 木質素 (Lignin) 20
    2.4 纖維素酶之簡介 23
    2.4.1 生產纖維素酶之細菌 23
    2.4.2 纖維素酶之種類 24
    2.4.2.1 內切-β-1, 4-葡聚醣酶 24
    2.4.2.2 外切-β-1, 4-葡聚醣酶 24
    2.4.2.3 β-葡萄糖苷酶 27
    2.5 酵母菌 27
    2.5.1 酵母菌之酒精發酵 27
    2.5.2 生產生質乙醇之酵母菌 29
    2.5.2.1 酵母菌之熱應力 29
    2.5.2.2 酵母菌之乙醇耐受性 32
    2.6 反應曲面法 32
    2.6.1 Plackett-Burma設計 33
    2.6.2 中央合成設計 33
    2.6.3 Box-Behnken設計 34
    2.6.4 Doehlert設計 34
    3. 材料與方法 36
    3.1 實驗架構 36
    3.2 實驗材料 37
    3.2.1 試藥 37
    3.2.2 培養基 39
    3.2.3 儀器設備 40
    3.3 實驗原料 43
    3.4 實驗菌株 43
    3.4.1 纖維素酶生產菌株之篩選 43
    3.4.1.1 剛果紅染色試驗 44
    3.4.1.2 纖維素酶活性之測定 44
    3.4.1.2.1 內切葡聚醣酶活性 (Carboxymethyl cellulase assay for endoglucanase) 44
    3.4.1.2.2 總纖維素酶活性 (Filter paper assay for cellulase) 45
    3.4.1.3 纖維素酶生產菌株之鑑定 45
    3.4.2 耐高溫酵母菌之篩選及分離 45
    3.4.2.1 耐高溫酵母菌之耐受性試驗 46
    3.4.2.1.1 溫度耐受性之試驗 46
    3.4.2.1.2 乙醇耐受性之試驗 46
    3.4.2.2 耐高溫酵母菌之葡萄糖發酵產氣能力試驗 46
    3.4.2.3 耐高溫酵母菌之鑑定 47
    3.4.2.3.1 API ID 32C 生化快速鑑定 47
    3.4.2.3.2 VITEK® 2 全自動微生物快速生化鑑定篩檢分析儀 47
    3.4.2.3.3 基因鑑定 47
    3.4.3 實驗菌株之生長曲線 50
    3.4.4 實驗菌株之菌體型態及大小 50
    3.4.5 實驗菌株之保存 50
    3.4.6 實驗菌株之活化 52
    3.4.7 實驗菌株之計數 52
    3.4.7.1 細菌之計數 52
    3.3.7.2 酵母菌之計數 52
    3.5 纖維素酶活性之穩定性探討 53
    3.5.1 pH值之穩定性 53
    3.5.2 溫度之穩定性 53
    3.6 咖啡果殼之一般成分分析 53
    3.6.1 水分含量 53
    3.6.2 粗灰分 54
    3.6.3 中性洗滌纖維 (Neutral Detergent Fiber, NDF) 54
    -3.6.4 酸性洗滌纖維 (Acid Detergent Fiber, ADF) 56
    3.6.5 酸性洗滌木質素 (Acid Detergent Lignin, ADL) 56
    3.6.6 半纖維素 56
    3.6.7 纖維素 58
    3.6.8 木質素 58
    3.7 咖啡果殼之前處理 58
    3.7.1 物理前處理法 58
    3.7.2 酸處理法 58
    3.7.3 鹼處理法 58
    3.7.4 纖維素酶處理 59
    3.8 發酵咖啡果殼之最適生產乙醇條件之探討 59
    3.8.1 因子設計 59
    3.8.2 反應曲面法 (Response surface methodology, RSM) 59
    3.9 發酵咖啡果殼之分析項目 61
    3.9.1 發酵咖啡果殼之還原醣濃度測定 61
    3.9.2 發酵咖啡果殼之乙醇濃度測定 61
    3.10 統計分析 62
    4. 結果與討論 63
    4.1 菌株之篩選及分離 63
    4.2 纖維素酶生產菌之選定 66
    4.2.1 內切葡聚醣酶活性試驗 66
    4.2.2 總纖維素酶活性試驗 68
    4.3 耐高溫酵母菌之選定 68
    4.3.1 溫度耐受性之試驗 68
    4.3.2 乙醇耐受性之試驗 70
    4.3.3 酵母菌之葡萄糖發酵產氣能力試驗 73
    4.4 實驗菌株之菌種鑑定及特性 76
    4.4.1 API ID 32C 生化快速鑑定 76
    4.4.2 VITEK® 2 全自動微生物快速生化鑑定 76
    4.4.3 16S rDNA 菌種鑑定 79
    4.4.4 選定之實驗菌株特性 79
    4.5 實驗菌株之生長曲線 84
    4.6 實驗菌株之菌體型態及大小 84
    4.7 纖維素酶活性之穩定性探討 87
    4.7.1 pH值之穩定性 87
    4.7.2 溫度之穩定性 87
    4.8 咖啡果殼之一般成分分析 91
    4.9 咖啡果殼之前處理 91
    4.9.1 酸處理法 91
    4.9.2 鹼處理法 93
    4.9.3 纖維素酶處理法 93
    4.10 發酵咖啡果殼之最適生產乙醇條件探討 96
    4.10.1 實驗因子之選定 96
    4.10.1.1 咖啡果殼與NaOH溶液於預處理之最適比例探討 96
    4.10.1.2 發酵咖啡果殼之最適胞外纖維素酶濃度探討 98
    4.10.1.3 發酵咖啡果殼之最適酵母菌接種量探討 100
    4.10.2 應用反應曲面法探討發酵咖啡果殼之最適生產乙醇條件 100
    4.10.2.1 發酵咖啡果殼之乙醇濃度 104
    5. 結論 109
    6. 參考文獻 111

    中華民國國家標準CNS。1984。食品中粗灰分之檢驗方法。總號5034。類號N6115。行政院經濟部標準鑑驗局。
    中華民國國家標準CNS。2004。酒類檢驗法-酒精度之測定。總號14849。類號N6375。行政院經濟部標準鑑驗局。
    朱恆昌。2015。建立共培養菌劑系統產生生質氫能之研究。國立中興大學生命科學研究所碩士論文。
    江柏宏。2011。以胡蘿蔔渣為原料利用耐高溫酵母菌K. marxianus進行酒精發酵之研究。大同大學生物工程研究所碩士論文。
    行政院衛生福利部食品藥物管理署 (TFDA)。2013。部授食字第1021950329號公告修正之食品微生物之檢驗方法─生菌數之檢驗(MOHWM0014.01)。
    行政院衛生福利部食品藥物管理署 (TFDA)。2013。部授食字第1021950329號公告修正之食品微生物之檢驗方法─黴菌及酵母菌數之檢驗(MOHWM0008.01)。
    李文鐸。2015。生質氫烷氣燃燒之能源效益與排放之研究。逢甲大學環境工程與科學研究所碩士論文。
    李惠虹。2016。纖維素酶水解與乳酸菌發酵對諾麗果生物活性物質釋放及其機能性之影響。國立臺灣海洋大學食品科學研究所博士論文。
    邱煜琳。2020。用反應曲面法尋找乳酸菌最適發酵金針菇飲品。國立中興大學食品暨應用生物科技研究所碩士論文。
    張弼弦。2021。探討雙向系統水解木質纖維素生質物生成暨萃取5-羥甲基糠醛之研究。國立雲林科技大學環境與安全衛生工程研究所碩士論文。
    郭品君。2021。利用反應曲面法探討黑豆茶的最適焙烤及沖泡條件。國立嘉義大學食品科學研究所碩士論文。
    陳宥任。2021。利用微生物菌體生產生質能源乙醇之最佳共固定生化反應器的探討。長庚大學化工與材料工程研究所碩士論文。
    黃忠村。2011。食品微生物。初版。復文圖書有限公司。44-55頁。
    黃麟婷。2015。纖維分解菌之篩選及利用於農業副產物堆肥化之研究。國立中興大學園藝學研究所碩士論文。
    楊正益。2018。生質氫暨沼氣應用於循環經濟之探討-以中國福建平潭島為例。逢甲大學環境工程與科學研究所博士論文。
    劉忠翰。2021。篩選本土性酵母釀造臺灣清酒之探討。國立屏東科技大學食品科學研究所碩士論文。
    蔣育書。2020。木質素/聚丙烯腈靜電紡絲碳奈米纖維熱電性質之研究。元智大學化學工程與材料科學研究所碩士論文。
    鄭宇捷。2018。發酵麩皮之乳酸菌篩選及對離乳豬生長之影響。國立屏東科技大學食品科學研究所碩士論文。
    盧廷雋。2016。紙漿種類及纖維素酶處理對紙張吸水度及強度性質之影響。大葉大學環境工程研究所碩士論文。
    釋傳璽。2021。雲林縣穀類生質能源發電之效能及空汙排放研究。崑山科技大學機械與能源工程研究所博士論文。
    Ahmed S. F., Mofijur M., Nahrin M., Chowdhury S. N., Nuzhat S., Alherek M., Rafa N., Ong H. C., Nghiem L. D., Mahlia T. M. I. 2021. Biohydrogen production from wastewater-based microalgae: Progresses and challenges. International Journal of Hydrogen Energy xxx: xxx.
    Amini E., Valls C., Roncero M. B. 2021. Ionic liquid-assisted bioconversion of lignocellulosic biomass for the development of value-added products. Journal of Cleaner Production 326: 129275.
    Anca-Couce A., Hochenauer C., Scharler R. 2021. Bioenergy technologies, uses, market and future trends with Austria as a case study. Renewable and Sustainable Energy Reviews 135: 110237.
    Arora R., Behera S., Sharma N. K., Kumar S. 2017. Augmentation of ethanol production through statistically designed growth and fermentation medium using novel thermotolerant yeast isolates. Renewable Energy 109: 406-421.
    Azadian F., Badoei-dalfard A., Namaki-Shoushtari A., Karami Z., Hassanshahian M. 2017. Production and characterization of an acido-thermophilic, organic solvent stable cellulase from Bacillus sonorensis HSC7 by conversion of lignocellulosic wastes. Journal of Genetic Engineering and Biotechnology 15: 187-196.
    Azhar S. H. M., Abdulla R., Jambo S. A., Marbawi H., Gansau J. A., Faik A. A. M., Rodrigues K. F. 2017. Yeasts in sustainable bioethanol production: A review. Biochemistry and Biophysics Reports 10: 52-61.
    Azlan N. S. M., Yap C. L., Gan S., Rahman M. B. A. 2022. Effectiveness of various solvents in the microwave-assisted extraction of cellulose from oil palm mesocarp fiber. Materials Today: Proceedings 59: 583-590.
    Benslama O., Mansouri N., Arhab R. 2022. In silico investigation of the lignin polymer biodegradation by two actinomycetal peroxidase enzymes. Materials Today: Proceedings 53: 1-5.
    Bezerra M. A., Santelli R. E., Oliveira E. P., Villar L. S., Escaleira L A. 2008. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76: 965-977.
    Bhuyan P. M., Sandilya S. P., Nath P. K., Gandotra S., Subramanian S., Kardong D., Gogoi D. K. 2018. Optimization and characterization of extracellular cellulase produced by Bacillus pumilus MGB05 isolated from midgut of muga silkworm (Antheraea assamensis Helfer). Journal of Asia-Pacific Entomology 21: 1171-1181.
    Bugg T. D. H., Williamson J. J., Alberti F. 2021. Microbial hosts for metabolic engineering of lignin bioconversion to renewable chemicals. Renewable and Sustainable Energy Reviews 152: 111674.
    Cerda A., Mejias L., Gea T., Sanchez A. 2017. Cellulase and xylanase production at pilot scale by solid-state fermentation from coffee husk using specialized consortia: The consistency of the process and the microbial communities involved. Bioresource Technology 243: 1059-1068.
    Chamnipa N., Thanonkeo S., Klanrit P., Thanonkeo P. 2018. The potential of the newly isolated thermotolerant yeast Pichia kudriavzevii RZ8-1 for high-temperature ethanol production. Brazilian Journal of Microbiology. 49: 378-391.
    Chandel A. K., Chan E. S., Rudravaram R., Narasu M. L., Rao V., Ravindra P. 2007. Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnology and Molecular Biology Review 2: 14-32.
    Chen J., Wang X., Zhang B., Yang Y., Song Y., Zhang F., Liu B., Zhou Y., Yi Y., Shan Y., Lü X. 2021. Integrating enzymatic hydrolysis into subcritical water pretreatment optimization for bioethanol production from wheat straw. Science of the Total Environment 770: 145321.
    Cheng-yu L., Jun Z., Hao-ran Y., Shu-rong W., Yong C. 2021. Advance on the pyrolytic transformation of cellulose. Journal of Fuel Chemistry and Technology 49: 1733-1751.
    Dar M. A., Pawar K. D., Rajput B. P., Rahi P., Pandit R. S. 2019. Purification of a cellulase from cellulolytic gut bacterium, Bacillus tequilensis G9 and its evaluation for valorization of agro-wastes into added value by products. Biocatalysis and Agricultural Biotechnology 20: 101219.
    Dasgupta D., Suman S. K., Pandey D., Ghosh D., Khan R., Agrawal D., Jain R. K., Vadde V. T., Adhikari D. K. 2013. Design and optimization of ethanol production from bagasse pith hydrolysate by a thermotolerant yeast Kluyveromyces sp. IIPE453 using response surface methodology. SpringerPlus 2: 1-10.
    Fu X., Zhang F., Dong C., Zhu W., Xiong K., Pang Z. 2021. Efficient homogeneous TEMPO-mediated oxidation of cellulose in lithium bromide hydrates. International Journal of Biological Macromolecules 191: 637-645.
    Gemechu F. G. 2020. Embracing nutritional qualities, biological activities and technological properties of coffee by products in functional food formulation. Trends in Food Science and Technology 104: 235-261.
    Gerchman Y., Schnitzer A., Gal R., Mirsky N., Chinkov N. 2012. A simple rapid gas-chromatography flame-ionization-detector (GC-FID) method for the determination of ethanol from fermentation processes. African Journal of Biotechnology 11: 3612-3616.
    Ghose T. K. 1987. Measurement of cellulase activites. Pure and Applied Chemistry 59: 257-268.
    Hejna A. 2021. Potential applications of by-products from the coffee industry in polymer technology-Current state and perspectives. Waste Management 121: 296-330.
    Hoseini M., Cocco S., Casucci G., Cardelli V., Corti G. 2021. Coffee by-products derived resources. A review. Biomass and Bioenergy 148: 106009.
    Hossain T., Miah A. B., Mahmud S. A., Mahin A. A. 2018. Enhanced bioethanol production from potato peel waste via consolidated bioprocessing with statistically optimized medium. Appl Biochem Biotechnol 186: 425-442.
    Irfan M., Asgha, U., Nadeem M., Nelofer R., Syed Q., Shakir H. A., Qazi J. I. 2016. Statistical optimization of saccharification of alkali pretreated wheat straw for bioethanol production. Waste and biomass valorization, 76: 1389-1396.
    Janissen B., Huynh T. 2018. Chemical composition and value-adding applications of coffee industry byproducts: A review. Resources, Conservation & Recycling 128: 110-117.
    Jugwanth Y., Sewsynker-Sukai Y., Gueguim Kana E. B. 2020. Valorization of sugarcane bagasse for bioethanol production through simultaneous saccharification and fermentation: Optimization and kinetic studies. Fuel 262: 116552.
    Karimifard S., Moghaddam M. R. A. 2018. Application of response surface methodology in physicochemical removal of dyes from wastewater: A critical review. Science of the Total Environment 640-641: 772-797.
    Khan M. U., Usman M., Ashraf M. A., Dutta N., Luo G., Zhang S. 2022. A review of recent advancements in pretreatment techniques of lignocellulosic materials for biogas production: Opportunities and Limitations. Chemical Engineering Journal Advances 10: 100263.
    Kuhad R. C., Deswal D., Sharma S., Bhattacharya A., Jain K. K., Kaur A., Pletschke B. I., Singh A., Karp M. 2016. Revisiting cellulase production and redefining current strategies based on major challenges. Renewable and Sustainable Energy Reviews 55: 249-272.
    Lee S. B., Tremaine M., Place M., Liu L., Pier A., Krause D. J., Xie D., Zhang Y., Landick R., Gasch A. P., Hittinger C. T., Sato T. K. 2021. Crabtree/Warburg-like aerobic xylose fermentation by engineered S. cerevisiae. Metabolic Engineering 68: 119-130.
    Li C. Y., Zhang J., Yuan H. R., Wang S. R., Chen Y. 2021a. Advance on the pyrolytic transformation of cellulose. Journal of Fuel Chemistry And Technology 49: 1733-1751.
    Li X., Zhao R., Li S., Wang Y., Wang X., Yang W., Yang M., Xiao W., Yang S., Lin X., Zheng X., Ma X., Zhao L., Xiao W., Cao L. 2022. Global reprogramming of xylose metabolism in S. cerevisiae efficiently produces ethanol from lignocellulose hydrolysates. Industrial Crops and Products 179: 114666.
    Li Z., Lu D., Gao X. 2021b. Optimization of mixture proportions by statistical experimental design using response surface method - A review. Industrial Crops & Products 36: 102101.
    Lin M., Yang L., Zhang H., Xia Y., He Y., Lan W., Ren J., Yue F., Lu F. 2021. Revealing the structure-activity relationship between lignin and anti-UV radiation. Industrial Crops and Products 174: 114212.
    Liu L., Huang W. C., Liu Y., Li M. 2021. Diversity of cellulolytic microorganisms and microbial cellulases. International Biodeterioration and Biodegradation 163: 105277.
    Mandels M., Reese E. T. 1957. Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. Journal of Bacteriology 73: 269-278.
    Manmai N., Unpaprom Y., Ponnusamy V. K., Ramaraj R. 2020. Bioethanol production from the comparison between optimization of sorghum stalk and sugarcane leaf for sugar production by chemical pretreatment and enzymatic degradation. Fuel 278: 118262.
    Martins R. P., Schmatz A. A., Freita L. A. D., Mutton M. J. R., Brienzo M. 2021. Solubilization of hemicellulose and fermentable sugars from bagasse, stalks, and leaves of sweet sorghum. Journal of Industrial Crops and Products 170: 113813.
    Marynowski L., Bucha M., Lempart-Drozd M., Stezpien M., Kondratowicz M., Smolarek-Lach J., Rybicki M., Goryl M., Brocks J., Simoneit B. R. T. 2021. Preservation of hemicellulose remnants in sedimentary organic matter. Geochimica et Cosmochimica Acta 310: 32-46.
    Mensah M. B., Jumpah H., Boadi N. O., Awudza J. A. M. 2021. Assessment of quantities and composition of corn stover in Ghana and their conversion into bioethanol. Scientific African 12: e00731.
    Miller G. L. 1959. Use of dinitrosaIicyIic acid reagent for determination of reducing sugar. Analytical Chemistry 31: 426-428.
    Morales M., Arvesen A., Cherubini F. 2021. Integrated process simulation for bioethanol production: Effects of varying lignocellulosic feedstocks on technical performance. Renewable and Sustainable Bioresource Technology 328: 124833.
    Munyendo L. M., Njoroge D. M., Owaga E. E., Mugendi B. 2021. Coffee phytochemicals and post-harvest handling-A complex and delicate balance. Journal of Food Composition and Analysis 102: 103995.
    Naghshbandi M. P., Tabatabaei M., Aghbashlo M., Gupta V. K., Sulaiman A., Karimi K., Moghimi H., Maleki M. 2019. Progress toward improving ethanol production through decreased glycerol generation in Saccharomyces cerevisiae by metabolic and genetic engineering approaches. Renewable and Sustainable Energy Reviews 115: 109353.
    Namsaraev Z. B., Gotovtsev P. M., Komova A. V., Vasilov R. G. 2018. Current status and potential of bioenergy in the Russian Federation. Renewable and Sustainable Energy Reviews 81: 625-634.
    Nandal P., Sharma S., Arora A. 2020. Bioprospecting non-conventional yeasts for ethanol production from rice straw hydrolysate and their inhibitor tolerance. Renewable Energy 147: 1694-1703.
    Nuanpeng S., Thanonkeo S., Yamada M., Thanonkeo P. 2016. Ethanol production from sweet sorghum juice at high temperaturesusing a newly isolated thermotolerant yeast Saccharomyces cerevisiae DBKKU Y-53. Energies. 9: 253.
    Parvez A. M., Lewis J. D., Afzal M. T. 2021. Potential of industrial hemp (Cannabis sativa L.) for bioenergy production in Canada: Status, challenges and outlook. Renewable and Sustainable Energy Reviews 141: 110784.
    Pereira L. M. S., Milan T. M., Tapia-Bl´acido D. R. 2021. Using Response Surface Methodology (RSM) to optimize 2G bioethanol production: A review. Biomass and Bioenergy 151: 106116.
    Pongcharoen P., Chawneua J., Tawong W. 2018. High temperature alcoholic fermentation by new thermotolerant yeast strains Pichia kudriavzevii isolated from sugarcane field soil. Agriculture and Natural Resources 52: 511-518.
    Queiroz B. G., Ciol H., Inada N. M., Frollini E. 2021. Hydrogel from all in all lignocellulosic sisal fibers macromolecular components. International Journal of Biological Macromolecules 181: 978-989.
    Rajnish K. N., Samuel M. S., John J. A., Datta S., Chandrasekar N., Balaji R., Jose S., Selvarajan E. 2021. Immobilization of cellulase enzymes on nano and micro-materials for breakdown of cellulose for biofuel production-a narrative review. International Journal of Biological Macromolecules 182: 1793-1802.
    Romani A., Larramendi A., Yanez R., Cancela A., Sanchez A., Teixeira J. A., Domingues L. 2019. Valorization of Eucalyptus nitens bark by organosolv pretreatment for the production of advanced biofuels. Industrial Crops and Products 132: 327-335.
    Ruangmee A., Sangwichien C. 2013. Response surface optimization of enzymatic hydrolysis of narrow-leaf cattail for bioethanol production. Energy Conversion and Management 73: 381-388.
    Saini P., Beniwal A., Kokkiligadda A., Vij S. 2018. Response and tolerance of yeast to changing environmental stress during ethanol fermentation. Process Biochemistry 72: 1-12.
    Santos ´E. M. D., Macedo L. M. D., Tundisi L. L., Ataide J. A., Camargo G. A., Alves R. C., Oliveira M. B. P. P., Mazzola P. G. 2021. Coffee by-products in topical formulations: A review. Trends in Food Science and Technology 111: 280-291.
    Shah F., Ranawat B., Dubey S., Mishra S. 2021. Optimization of fermentation conditions for higher cellulase production using marine Bacillus lichenif ormis KY962963: An epiphyte of Chlorococcum sp.. Biocatalysis and Agricultural Biotechnology 35: 102047.
    Shankar K., Kulkarni N. S., Jayalakshmi S. K., Sreeramulu K. 2019. Saccharification of the pretreated husks of corn, peanut and coffee cherry by the lignocellulolytic enzymes secreted by Sphingobacterium sp. ksn for the production of bioethanol. Biomass and Bioenergy 127: 105298.
    Sharma P., Usman M., Salama E. S., Redina M., Thakur N., Li X. 2021. Evaluation of various waste cooking oils for biodiesel production: A comprehensive analysis of feedstock. Waste Management 136: 219-229.
    Silva R. N., Andrade Melo L. F., Finkler C. L. L. 2021a. Optimization of the cultivation conditions of Bacillus licheniformis BCLLNF-01 for cellulase production. Bioresource Technology 29: e00599.
    Silva T. P., Ferreira A. N., de Albuquerque F. S., de Almeida Barros A. C., da Luz J. M. R., Gomes F. S., Pereira H. J. V. 2021b. Box–Behnken experimental design for the optimization of enzymatic saccharification of wheat bran. Biomass Conversion and Biorefinery, 1-8.
    Singh A., Bajar S., Devi A., Pant D. 2021. An overview on the recent developments in fungal cellulase production and their industrial applications. Bioresource Technology Reports 14: 100652.
    Singhania R. R., Ruiz H. A., Awasthi M. K., Dong C., Chen C. W., Patel A. K. 2021. Challenges in cellulase bioprocess for biofuel applications. Renewable and Sustainable Energy Reviews 151: 111622.
    Siqueira J. G. W., Rodrigues C., Vandenberghe L. P. S., Woiciechowski A. L., Soccol C. R. 2020. Current advances in on-site cellulase production and application on lignocellulosic biomass conversion to biofuels: A review. Biomass and Bioenergy 132: 105419.
    Snehya A. V., Sundaramahalingam M. A., Rajeshbanu J., Anandan S., Sivashanmugam P. 2021. Studies on evaluation of surfactant coupled sonication pretreatment on Ulva fasciata (marine macroalgae) for enhanced biohydrogen production. Ultrasonics Sonochemistry 81: 105853.
    Srivastava N., Singh R., Mohammad A., Pal D. B., Syed A., Elgorban A. M., Mishra P. K., Yoon T., Srivastava M., Gupta V. K. 2022. Graphene oxide mediated enhanced cellulase production using pomegranate waste following co-cultured condition with improved pH and thermal stability. Fuel 312: 122807.
    Srivastava N., Srivastava M., Alhazmi A., Kausar T., Haque S., Singh R., Ramteke P. W., Mishra P. K., Tuohy M., Leitgeb M., Gupta V. K. 2021. Technological advances for improving fungal cellulase production from fruit wastes for bioenergy application: A review. Environmental Pollution 287: 117370.
    Sukumaran R. K., Christopher M., Valappil P. K., Raju A. S., Mathew R. M., Sankar M., Puthiyamadam A., Adarsh V. P., Aswathi A., Rebinro V., Abraham A., Pandey A. 2021. Addressing challenges in production of cellulases for biomass hydrolysis: Targeted interventions into the genetics of cellulase producing fungi. Bioresource Technology 329: 124746.
    Techaparin A., Thanonkeo P., Klanrit P. 2017. High-temperature ethanol production using thermotolerant yeast newly isolated from Greater Mekong Subregion. Brazilian Journal of Microbiology 48: 461-475.
    Topare N. S., Jogdand R. I., Shinde H. P., More R. S., Khan A., Asiri A. M. 2022. A short review on approach for biodiesel production: Feedstock’s, properties, process parameters and environmental sustainability. Materials Today: Proceedings 57: 1605-1612.
    Van Soeat P. J., Robertson J. B., Lewis B. A. 1991. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of dairy seience 74: 3583-3597.
    Wang H., Peng X., Zhang H., Yang S., Li H. 2021. Microorganisms-promoted biodiesel production from biomass: A review. Energy Conversion and Management 12: 100137.
    Wang Z., Keshwani D. R., Redding A. P., Cheng J. J. 2010. Sodium hydroxide pretreatment and enzymatic hydrolysis of coastal Bermuda grass. Bioresource Technology 101: 3583-3585.
    Ward R. A., Charlton A., Welham K. J., Baker P., Zein S. H., Tomkinson J., Richards D. I., Kelly S. M., Kelly N. S., Wadhawan J. D. 2021. Electrochemical quantification of D-glucose during the production of bioethanol from thermo-mechanically pre-treated wheat straw. Electrochemistry Communications 124: 106942.
    Xiang H., Xin P., Prasongthum N., Natewong P., Sooknoi T., Wang J., Reubroycharoen P., Xiaolei F. 2022. Catalytic conversion of bioethanol to value-added chemicals and fuels: A review. Resources Chemicals and Materials 1: 47-68.
    Yang G., Yang D., Wang X., Cao W. 2021. A novel thermostable cellulase-producing Bacillus licheniformis A5 acts synergistically with Bacillus subtilis B2 to improve degradation of Chinese distillers’ grains. Bioresource Technology 325: 124729.
    Ye L., Han Y., Wang X., Lu X., Qi X., Yu H. 2021. Recent progress in furfural production from hemicellulose and its derivatives: Conversion mechanism, catalytic system, solvent selection. Molecular Catalysis 515: 111899.
    Zhou L., Gao D., Ma Y., Li H., Su Y., Yang X., Lu T. 2021. Depolymerization of cellulose promoted by lignin via oxidation-hydrolysis route. Industrial Crops & Products 174: 114179.

    無法下載圖示 校外公開
    2027/08/08
    QR CODE