簡易檢索 / 詳目顯示

研究生: 曾宇賢
Tseng, Yu-Hsien
論文名稱: 本土狹長介形蟲(Stenocypris major)底泥生物毒性試驗方法之優化條件與物種靈敏度探討
Native Seed Shrimp (Cyprididae: Stenocypris major) Used for Sediment Biological Toxicity Testing, Method Optimization and Sensitivity Evaluation
指導教授: 謝季吟
Hsieh, Chi-Ying
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程與科學系所
Department of Environmental Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 92
中文關鍵詞: 底棲無脊椎動物介形蟲Stenocypris major生物毒性試驗
外文關鍵詞: Benthic invertebrates, Ostracods, Stenocypris major, Biological toxicity testing
DOI URL: http://doi.org/10.6346/NPUST202200386
相關次數: 點閱:27下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 由於大型底棲無脊椎動物群落的種類和結構同周圍環境之間的關係密切,近年來常被作為生物監測,反映水域底部的污染現況及生態毒理學風險評估之指標物種。美國材料試驗協會(ASTM)、美國環保署(USEPA)及經濟合作暨發展組織(OECD)等機構,已建立一系列標準之生物毒性試驗方法,評估受試驗生物經長時間暴露所造成的影響,但試驗生物馴養維護耗費大量人力成本與費用,因此市面上有了快篩式的TOXKIT生物毒性試驗套組的誕生,不僅能降低實驗室馴養成本,也能於短時間內進行具靈敏且可重複結果之生物毒性試驗。本研究將持續優化本土底棲無脊椎生物狹長介形蟲(Stenocypris major)底泥毒性試驗,穩定幼蟲暴露之初始體長。S. major與環檢所公告之底泥生物毒性試驗之Hyalella azteca和水體生物毒性試驗之 Daphnia magna試驗生物進行環境樣品暴露以了解作為毒性試驗物種之合適性與靈敏度,以利於S. major生物毒性試驗套組之開發。S. major暴露於水體參考毒物NaCl試驗中,四種不同暴露時間(24hr、48hr、72hr及96hr)之LC50分別為5230、4574、3632及3239 mg/L,顯示S. major屬於中耐受性物種。S. major休眠卵最適孵化條件以添加10:0.4 mL(中硬度水:營養液B),於25℃及24hr全光照環境下進行孵化,孵化時間為72-168hr。S. major底泥毒性試驗之流程為,於6孔盤中每孔添加1mL底泥、4:0.8 mL(中硬度水:營養液C)及10隻S. major進行暴露,暴露時間為144hr,於25℃及24hr全暗環境下進行。參考樣品配方為石英砂70.5%、高嶺土24%、纖維素5%、白雲石0.49%及腐植酸0.01%組成,試驗終點控制組存活率≧80%及成長率≧50%,樣品以存活率及生長抑制率進行評估。暴露底泥樣品研究顯示,S. major與H. azteca兩者生物體存活率相比呈現相似之毒性效應;S. major與D. magna暴露於水體樣品,於上覆水和孔隙水之存活率同樣呈現相似之毒性效應,甚至更為靈敏,不同之環境參數呈現不同之毒性效應,顯示S. major適合作為環境監測之毒性試驗物種。本研究試驗因理化水質參數影響導致無法反應底泥污染物對生物體之毒性效應,建議優化毒性試驗方法,以利於不同環境參數之探討,完備試驗套組以提供商業化之可行性。

    Macrobenthic invertebrate communities and indicator species are often used in biological monitoring and ecotoxicological risk assessment to reflect the environmental pollution status of the bottom of the water column because of their close relationship with the quality of their surrounding environment. Organizations such as the American Society for Testing and Materials (ASTM), the U.S. Environmental Protection Agency (USEPA), and the Organization for Economic Cooperation and Development (OECD) have established a series of standard biotoxicity test methods to evaluate the effects of long-term exposure to test organisms. However, the domestication and maintenance of test organisms consume a lot of labor and other expenses. Therefore, the rapid screening TOXKIT biotoxicity test kit was created to not only reduce the costs of laboratory domestication but also perform sensitive and repeatable tests in a short time period. This study will continue to optimize the sediment toxicity test designed for the native benthic invertebrate Stenocypris major and standardize the initial body length of exposed larvae. S. major and Hyalella azteca in the biological toxicity testing of sediments (announced by the Environmental Inspection Institute) and Daphnia magna in the biological toxicity testing of water were exposed to environmental samples to understand their suitability and sensitivity for use in the S. major Biotoxicity Test Kit. In the testing of S. major exposed to reference toxicant NaCl in solution, the LC50 values for four different exposure times (24hr, 48hr, 72hr, and 96hr) were 5230, 4574, 3632, and 3239 mg/L, respectively, indicating that S. major was moderately tolerant. The optimal incubation conditions for S. major dormant eggs were to add 10:0.4 mL of medium hardness water: nutrient solution B, and incubate to hatching at 25 °C and 24hr full light for 72-168hr. The S. major sediment toxicity test procedure was to add 1 mL of sediment, 4:0.8 mL medium-hardness water: nutrient solution C, and 10 S. major to each well of a 6-well plate for an exposure time of 144 hr at 25 °C and 24hr total darkness. The formulated reference sediment constituents were 70.5% quartz sand, 24% kaolin, 5% cellulose, 0.49% dolomite, and 0.01% humic acid. The survival rate of the control group at the end of the test was ≧80% and growth rate was ≧50%. Their exposure to sediment samples showed that S. major and H. azteca exhibited similar toxic effects on survival rates. S. major and D. magna exposed to water samples had the same survival rates in overlying water and pore water, showing similar toxicity effects but being even more sensitive. Different environmental parameters showed different toxicity effects, indicating that S. major is suitable as a toxicity test species for environmental monitoring. Due to the influence of physical and chemical water quality parameters, this research test cannot reflect the overall toxic effect of sediment pollutants on organisms. We recommend that the toxicity test method be optimized to facilitate the discussion of different environmental parameters, and complete the test set to inform the feasibility of commercialization.

    摘要 I
    Abstract III
    謝誌 V
    目錄 VI
    圖目錄 X
    表目錄 XII
    第一章 前言 1
    1.1 研究緣起 1
    1.2 研究目的 3
    1.3 研究架構 4
    第二章 文獻回顧 5
    2.1底泥品質指標 5
    2.2參考底泥組成(Reference sediment composition) 7
    2.3市售介形蟲毒性試驗套組(Ostracodtoxkit F™) 9
    2.4介形綱(Ostracoda) 13
    2.5休眠卵(Dormant egg) 15
    2.6大型狹長介蟲(Stenocypris major) 17
    2.7底泥生物毒性試驗(Sediment biological toxicity testing) 20
    2.8總石油碳氫化合物對生物的影響 22
    第三章 材料與方法 24
    3.1實驗藥品與儀器設備 24
    3.1.1 實驗藥品 24
    3.1.2 實驗器材與設備 25
    3.2試驗生物 26
    3.2.1 S. major馴養方法 26
    3.2.2 S. major休眠卵之製備 26
    3.2.3 S. major休眠卵孵化條件之體長影響探討 26
    3.3 S. major暴露試驗 28
    3.3.1 人工參考底泥試驗 28
    3.3.2 環境參考底泥試驗 29
    3.3.3 水體參考毒物濃度管制 29
    3.4 環境樣品暴露 29
    3.4.1 環境背景描述 29
    3.4.2 S. major暴露於環境底泥樣品流程 30
    3.4.3 Hyalella azteca暴露於環境底泥樣品流程 31
    3.4.4 S. major暴露於環境樣品上覆水及孔隙水流程 31
    3.4.5 Daphnia magna暴露於環境樣品上覆水及孔隙水流程 31
    3.4.6 總石油碳氫化合物污染土壤暴露 32
    3.5環境樣品分析 33
    3.4.1 底泥與污染土壤之金屬濃度分析 33
    3.4.2 底泥粒徑分析 34
    3.4.3 底泥總有機碳分析(Total organic carbon, TOC) 35
    3.5儀器分析 36
    3.5.1電感耦合電漿體光學發射光譜法(ICP-OES) 36
    3.5.2氣相層析儀/火焰離子化偵測器法(GC/FID) 36
    3.6 實驗室之品保品管 37
    3.6.1檢量線(Calibration curve)製作 37
    3.6.2添加回收率(Recovery)計算 37
    3.6.3重複樣品分析 37
    3.6.4方法偵測極限(MDL) 37
    3.7統計分析 38
    第四章 結果與討論 39
    4.1 S. major暴露於參考毒物氯化鈉(NaCl)之靈敏度探討 39
    4.2 休眠卵孵化條件對S.major體長影響之探討 43
    4.2.1 乾燥時間對S.major體長之影響 43
    4.2.2休眠卵暴露於不同光照強度(lux)之孵化時間及孵化率 45
    4.2.3 S. major休眠卵於不同體積營養液B之孵化率 47
    4.3 S. major 暴露試驗 48
    4.3.1 人工參考底泥暴露 48
    4.3.2 S. major暴露於含營養液人工參考底泥之存活率、成長率、抑制率之相關性 49
    4.4 生物暴露於環境底泥樣品 52
    4.4.1 環境底泥樣品pH值及總有機碳分析 52
    4.4.2 環境底泥樣品粒徑分析 52
    4.4.3 環境底泥樣品8種重金屬濃度分析 54
    4.4.4 S. major暴露於環境底泥樣品之存活率、成長率、生長抑制率及試驗水質變化 58
    4.4.5 Hyalella azteca暴露於環境底泥樣品之存活率 62
    4.5 環境樣品底泥上覆水與孔隙水暴露 64
    4.5.1 環境樣品底泥上覆水與孔隙水8種重金屬濃度分析 64
    4.5.2 S. major暴露環境樣站底泥上覆水與孔隙水之存活率 67
    4.5.3 D. magna暴露於環境樣品上覆水及孔隙水之存活率 70
    4.6 S. major 暴露於TPH污染土壤之效應探討 73
    4.6.1污染土壤分析 73
    4.6.2 S. major暴露於TPH污染土壤之存活率及試驗水質變化 75
    第五章 結論與建議 77
    5.1結論 77
    5.2 建議 78
    第六章 參考文獻 79
    附錄一 92
    作者簡介 93

    何宗育,2021,本土狹長介形蟲(Stenocypris major)生物毒性試驗方法休眠卵保存及孵化條件之優化,碩士論文,國立屏東科技大學,屏東。
    梁仕旻,2019,台灣本土狹長介形蟲(Stenocypris major)休眠卵保存及活化過程之優化,碩士論文,國立屏東科技大學,屏東。
    楊于嫺,2014,都市河川復育之研究-以老街溪為例,碩士論文,國立成功大學,台南。
    楊智翔,2018,台灣本土無脊椎動物做為底泥毒性試驗物種之靈敏度探討,碩士論文,國立屏東科技大學,屏東。
    楊樹森、謝季吟、胡紹陽,2018,本土物種應用於底泥生態風險評估研究計畫(期末報告),計畫編碼:EPA-105-GA13-03-A293.
    行政院環境保護署,2012,底泥品質指標之分類管理及用途限制辦法。
    Adipah, S. (2019). Introduction of petroleum hydrocarbons contaminants and its human effects. Journal of Environmental Science and Public Health, 3(1), 1-9.
    Ansari, Z., Farshchi, P., & Badesab, S. (2010). Response of meiofauna to petroleum hydrocarbon of three fuel oils.
    Bartoli, G., Papa, S., Sagnella, E., & Fioretto, A. (2012). Heavy metal content in sediments along the Calore river: Relationships with physical–chemical characteristics. Journal of Environmental Management, 95, S9-S14.
    Battauz, Y. S., de Paggi, S. B. J., & Paggi, J. C. (2017). Macrophytes as dispersal vectors of zooplankton resting stages in a subtropical riverine floodplain. Aquatic Ecology, 51(2), 191-201.
    Bhattacharyya, K. G., & Gupta, S. S. (2008). Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Advances in Colloid and Interface Science, 140(2), 114-131.
    Birch, G. F. (2018). A review of chemical-based sediment quality assessment methodologies for the marine environment. Marine Pollution Bulletin, 133, 218-232.
    Birk, S., Bonne, W., Borja, A., Brucet, S., Courrat, A., Poikane, S., Solimini, A., Van De Bund, W., Zampoukas, N., & Hering, D. (2012). Three hundred ways to assess Europe's surface waters: an almost complete overview of biological methods to implement the Water Framework Directive. Ecological indicators, 18, 31-41.
    Blasco, C., & Picó, Y. (2009). Prospects for combining chemical and biological methods for integrated environmental assessment. TrAC Trends in Analytical Chemistry, 28(6), 745-757.
    Brendonck, L., & De Meester, L. (2003). Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia, 491(1), 65-84.
    Brock, M. A., Nielsen, D. L., Shiel, R. J., Green, J. D., & Langley, J. D. (2003). Drought and aquatic community resilience: the role of eggs and seeds in sediments of temporary wetlands. Freshwater Biology, 48(7), 1207-1218.
    Burdon, F. J., Munz, N. A., Reyes, M., Focks, A., Joss, A., Räsänen, K., Altermatt, F., Eggen, R. I. L., & Stamm, C. (2019). Agriculture versus wastewater pollution as drivers of macroinvertebrate community structure in streams. Science of the Total Environment, 659, 1256-1265.
    Burton, G. A. (2013). Assessing sediment toxicity: past, present, and future.
    Burton Jr, G. A. (1991). Assessing the toxicity of freshwater sediments. Environmental Toxicology and Chemistry: An International Journal, 10(12), 1585-1627.
    Burton Jr, G. A., Denton, D. L., Ho, K., & Ireland, D. S. (2002). Sediment toxicity testing: issues and methods. In Handbook of ecotoxicology (pp. 135-174). CRC Press.
    César dos Santos Lima, J., Gazonato Neto, A. J., de Pádua Andrade, D., Freitas, E. C., Moreira, R. A., Miguel, M., Daam, M. A., & Rocha, O. (2019). Acute toxicity of four metals to three tropical aquatic invertebrates: The dragonfly Tramea cophysa and the ostracods Chlamydotheca sp. and Strandesia trispinosa. Ecotoxicology and Environmental Safety, 180, 535-541.
    Carman, K. R., Fleeger, J. W., & Pomarico, S. M. (2000). Does historical exposure to hydrocarbon contamination alter the response of benthic communities to diesel contamination? Marine Environmental Research, 49(3), 255-278.
    Casado-Martinez, M. C., Burga-Pérez, K. F., Bebon, R., Férard, J.-F., Vermeirssen, E. L., & Werner, I. (2016). The sediment-contact test using the ostracod Heterocypris incongruens: Effect of fine sediments and determination of toxicity thresholds. Chemosphere, 151, 220-224.
    Chang, F.-H., Lawrence, J. E., Rios-Touma, B., & Resh, V. H. (2014). Tolerance values of benthic macroinvertebrates for stream biomonitoring: assessment of assumptions underlying scoring systems worldwide. Environmental monitoring and assessment, 186(4), 2135-2149.
    Chapman, M., & Tolhurst, T. (2007). Relationships between benthic macrofauna and biogeochemical properties of sediments at different spatial scales and among different habitats in mangrove forests. Journal of Experimental Marine Biology and Ecology, 343(1), 96-109.
    Chapman, P. M., Anderson, B., & Carr, S. (1998). General guidelines for using the Sediment Quality Triad. Oceanographic Literature Review, 2(45), 367.
    Chapman, P. M., Wang, F., Janssen, C. R., Goulet, R. R., & Kamunde, C. N. (2003). Conducting ecological risk assessments of inorganic metals and metalloids: current status. Human and ecological risk assessment, 9(4), 641-697.
    Chen, S. Y., & Lin, J. G. (2001). Bioleaching of heavy metals from sediment: significance of pH. Chemosphere, 44(5), 1093-1102.
    Chuan, M., Shu, G., & Liu, J. (1996). Solubility of heavy metals in a contaminated soil: effects of redox potential and pH. Water, Air, and Soil Pollution, 90(3), 543-556.
    Cáceres, C. E., & Tessier, A. J. (2003). How long to rest: the ecology of optimal dormancy and environmental constraint. Ecology, 84(5), 1189-1198.
    Crane, J. L. (2000). Development of a framework for evaluating numerical sediment quality targets and sediment contamination in the St. Louis River Area of Concern. US Environmental Protection Agency.
    Crane, M., Watts, C., & Boucard, T. (2006). Chronic aquatic environmental risks from exposure to human pharmaceuticals. Science of the Total Environment, 367(1), 23-41.
    Danks, H. V. (1987). Insect dormancy: an ecological perspective. Biological Survey of Canada (Terrestrial Arthropods).
    De Castro-Català, N., Kuzmanovic, M., Roig, N., Sierra, J., Ginebreda, A., Barceló, D., Pérez, S., Petrovic, M., Picó, Y., & Schuhmacher, M. (2016). Ecotoxicity of sediments in rivers: Invertebrate community, toxicity bioassays and the toxic unit approach as complementary assessment tools. Science of the Total Environment, 540, 297-306.
    De Cooman, W., Blaise, C., Janssen, C., Detemmerman, L., Elst, R., & Persoone, G. (2015). History and sensitivity comparison of two standard whole-sediment toxicity tests with crustaceans: the amphipod Hyalella azteca and the ostracod Heterocypris incongruens microbiotest. Knowledge and Management of Aquatic Ecosystems(416), 15.
    De Meester, L., Declerck, S., Stoks, R., Louette, G., Van De Meutter, F., De Bie, T., Michels, E., & Brendonck, L. (2005). Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquatic conservation: Marine and freshwater ecosystems, 15(6), 715-725.
    De Meester, L., & Dejager, H. (1993). Hatching of Daphnia sexual eggs. 1. Intraspecific differences in the hatching responses of Daphnia-magna eggs. Freshwater Biology, 30(2), 219-226.
    de Morais Junior, C. S., Diniz, L. P., Sousa, F. D. R., Gonçalves-Souza, T., Elmoor-Loureiro, L. M. A., & de Melo Júnior, M. (2019). Bird feet morphology drives the dispersal of rotifers and microcrustaceans in a Neotropical temporary pond. Aquatic Sciences, 81(4), 1-9.
    De Stasio, B. T. (1989). The seed bank of a freshwater crustacean: copepodology for the plant ecologist. Ecology, 70(5), 1377-1389.
    Du, H., Liu, W., Zhang, M., Si, C., Zhang, X., & Li, B. (2019). Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydrate polymers, 209, 130-144.
    Echols, B. S., Currie, R. J., & Cherry, D. S. (2010). Preliminary results of laboratory toxicity tests with the mayfly, Isonychia bicolor (Ephemeroptera: Isonychiidae) for development as a standard test organism for evaluating streams in the Appalachian coalfields of Virginia and West Virginia. Environmental Monitoring and Assessment, 169(1), 487-500.
    Ellner, S., & Hairston Jr, N. G. (1994). Role of overlapping generations in maintaining genetic variation in a fluctuating environment. The American Naturalist, 143(3), 403-417.
    Erlacher, E., Loibner, A. P., Kendler, R., & Scherr, K. E. (2013). Distillation fraction-specific ecotoxicological evaluation of a paraffin-rich crude oil. Environmental Pollution, 174, 236-243.
    Fleeger, J. W., Riggio, M. R., Mendelssohn, I. A., Lin, Q., Hou, A., & Deis, D. R. (2018). Recovery of saltmarsh meiofauna six years after the Deepwater Horizon oil spill. Journal of Experimental Marine Biology and Ecology, 502, 182-190.
    Gómez-Gutiérrez, A., Garnacho, E., Bayona, J. M., & Albaigés, J. (2007). Screening ecological risk assessment of persistent organic pollutants in Mediterranean sea sediments. Environment International, 33(7), 867-876.
    Gleason, J. E., & Rooney, R. C. (2017). Aquatic macroinvertebrates are poor indicators of agricultural activity in northern prairie pothole wetlands. Ecological indicators, 81, 333-339.
    Grace Liu, P.-W., Chang, T. C., Whang, L.-M., Kao, C.-H., Pan, P.-T., & Cheng, S.-S. (2011). Bioremediation of petroleum hydrocarbon contaminated soil: Effects of strategies and microbial community shift. International Biodeterioration & Biodegradation, 65(8), 1119-1127.
    Gregg, J. M., Bish, D. L., Kaczmarek, S. E., & Machel, H. G. (2015). Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: a review. Sedimentology, 62(6), 1749-1769.
    Gu, Y., Tobino, T., & Nakajima, F. (2020). Effect of calcite saturation state on the growth and mortality of Heterocypris incongruens and a proposal for an reference artificial sediment in the sediment toxicity test ISO14371. Science of the Total Environment, 702, 134993.
    Hafner, C., Gartiser, S., Garcia-Käufer, M., Schiwy, S., Hercher, C., Meyer, W., Achten, C., Larsson, M., Engwall, M., Keiter, S., & Hollert, H. (2015). Investigations on sediment toxicity of German rivers applying a standardized bioassay battery. Environmental Science and Pollution Research, 22(21), 16358-16370.
    Hreniuc, M., Coman, M., & Cioruţa, B. (2015, May). Consideration regarding the soil pollution with oil products in Sacel-Maramures. In International Conference of scientific paper AFASES. Brasov (pp. 28-30).
    Hussain, S., Joy, M. M., Rajkumar, A., Nishath, N. M., & Fulmali, S. T. (2016). Distribution of calcareous microfauna (Foraminifera and Ostracoda) from the beach sands of Kovalam, Thiruvananthapuram, Kerala, Southwest Coast of India. J Palaeontol Soc Ind, 61, 267-272.
    Islam, M. A., Das, B., Quraishi, S. B., Khan, R., Naher, K., Hossain, S. M., Karmaker, S., Latif, S. A., & Hossen, M. B. (2020). Heavy metal contamination and ecological risk assessment in water and sediments of the Halda river, Bangladesh: A natural fish breeding ground. Marine Pollution Bulletin, 160, 111649.
    Islam, M. S., Ahmed, M. K., Raknuzzaman, M., Habibullah-Al-Mamun, M., & Islam, M. K. (2015). Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country. Ecological indicators, 48, 282-291.
    Külköylüoğlu, O. (2003). Ecology of freshwater Ostracoda (Crustacea) from lakes and reservoirs in Bolu, Turkey. Journal of Freshwater Ecology, 18(3), 343-347.
    Karanovic, I. (2012). Recent freshwater ostracods of the world: Crustacea, Ostracoda, Podocopida. Springer Science & Business Media.
    Karuthapandi, M., & Rao, D. (2016). Freshwater Ostracods (Crustacea: Ostracoda) of Telangana, India. Records of the Zoological Survey of India, 116(3), 241-277.
    Kemble, N. E., Dwyer, F. J., Ingersoll, C. G., Dawson, T. D., & Norberg‐King, T. J. (1999). Tolerance of freshwater test organisms to formulated sediments for use as control materials in whole‐sediment toxicity tests. Environmental Toxicology and Chemistry: An International Journal, 18(2), 222-230.
    Khanal, R., Furumai, H., & Nakajima, F. (2014). Toxicity assessment of size-fractionated urban road dust using ostracod Heterocypris incongruens direct contact test. Journal of hazardous materials, 264, 53-64.
    Khanal, R., Furumai, H., & Nakajima, F. (2015). Characterization of toxicants in urban road dust by toxicity identification evaluation using ostracod Heterocypris incongruens direct contact test. Science of the Total Environment, 530, 96-102.
    Kudłak, B., Wolska, L., & Namieśnik, J. (2011). Determination of EC 50 toxicity data of selected heavy metals toward Heterocypris incongruens and their comparison to “direct-contact” and microbiotests. Environmental monitoring and assessment, 174(1), 509-516.
    Kumari, P., & Maiti, S. K. (2020). Bioassessment in the aquatic ecosystems of highly urbanized agglomeration in India: An application of physicochemical and macroinvertebrate-based indices. Ecological indicators, 111, 106053.
    Liu, A., Duodu, G. O., Goonetilleke, A., & Ayoko, G. A. (2017). Influence of land use configurations on river sediment pollution. Environmental Pollution, 229, 639-646.
    Liu, W., Du, H., Liu, H., Xie, H., Xu, T., Zhao, X., Liu, Y., Zhang, X., & Si, C. (2020). Highly efficient and sustainable preparation of carboxylic and thermostable cellulose nanocrystals via FeCl3-catalyzed innocuous citric acid hydrolysis. ACS Sustainable Chemistry & Engineering, 8(44), 16691-16700.
    Long, E. R., Hong, C. B., & Severn, C. G. (2001). Relationships between acute sediment toxicity in laboratory tests and abundance and diversity of benthic infauna in marine sediments: a review. Environmental Toxicology and Chemistry: An International Journal, 20(1), 46-60.
    Marco-Barba, J., Holmes, J. A., Mesquita-Joanes, F., & Miracle, M. R. (2013). The influence of climate and sea-level change on the Holocene evolution of a Mediterranean coastal lagoon: evidence from ostracod palaeoecology and geochemistry. Geobios, 46(5), 409-421.
    Martens, K., & Savatenalinton, S. (2011). A subjective checklist of the Recent, free-living, non-marine Ostracoda (Crustacea). Zootaxa, 2855(1), 1–79-71–79.
    Martens, K., Schön, I., Meisch, C., & Horne, D. J. (2007). Global diversity of ostracods (Ostracoda, Crustacea) in freshwater. In Freshwater animal diversity assessment (pp. 185-193). Springer.
    Martínez-Santos, M., Probst, A., García-García, J., & Ruiz-Romera, E. (2015). Influence of anthropogenic inputs and a high-magnitude flood event on metal contamination pattern in surface bottom sediments from the Deba River urban catchment. Science of the Total Environment, 514, 10-25.
    Masindi, V., & Muedi, K. L. (2018). Environmental contamination by heavy metals. Heavy metals, 10, 115-132.
    Mautner, A.-K., Gallmetzer, I., Alexandra, H., Schnedl, S.-M., Tomasovych, A., & Zuschin, M. (2018). Holocene ecosystem shifts and human-induced loss of Arca and Ostrea shell beds in the north-eastern Adriatic Sea. Marine Pollution Bulletin, 126, 19-30.
    Meish, C. (2000). Freshwater Ostracoda of western and central Europe. Crustacea.
    Mezquita, F., Griffiths, H. I., Sanz, S., Soria, J. M., & Piñón, A. (1999). Ecology and distribution of ostracods associated with flowing waters in the eastern Iberian Peninsula. Journal of Crustacean Biology, 19(2), 344-354.
    Mishra, A. K., & Kumar, G. S. (2015). Weathering of oil spill: modeling and analysis. Aquatic Procedia, 4, 435-442.
    Morais, A. L., & Coimbra, J. C. (2019). Ostracoda (Crustacea) from the infralittoral of Santa Catarina State, southern Brazil. Marine Biodiversity, 49(1), 69-82.
    Moreira, L. B., Braga Castro, Í., Fillmann, G., Peres, T. F., Cavalcante Belmino, I. K., Sasaki, S. T., Taniguchi, S., Bícego, M. C., Marins, R. V., Drude de Lacerda, L., Costa-Lotufo, L. V., & de Souza Abessa, D. M. (2021). Dredging impacts on the toxicity and development of sediment quality values in a semi-arid region (Ceará state, NE Brazil). Environmental Research, 193, 110525.
    Moreno, E., Pérez-Martínez, C., & Conde-Porcuna, J. (2016). Dispersal of zooplankton dormant propagules by wind and rain in two aquatic systems. Limnetica, 35(2), 323-336.
    Mount, D. R., Gulley, D. D., Hockett, J. R., Garrison, T. D., & Evans, J. M. (1997). Statistical models to predict the toxicity of major ions to Ceriodaphnia dubia, Daphnia magna and Pimephales promelas (fathead minnows). Environmental Toxicology and Chemistry: An International Journal, 16(10), 2009-2019.
    Muna, M., Blinova, I., Kahru, A., Vinković Vrček, I., Pem, B., Orupõld, K., & Heinlaan, M. (2018). Combined effects of test media and dietary algae on the toxicity of CuO and ZnO nanoparticles to freshwater microcrustaceans Daphnia magna and Heterocypris incongruens: Food for thought. Nanomaterials, 9(1), 23.
    Nelson, D. a., & Sommers, L. E. (1983). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 2 chemical and microbiological properties, 9, 539-579.
    Nugnes, R., Lavorgna, M., Orlo, E., Russo, C., & Isidori, M. (2022). Toxic impact of polystyrene microplastic particles in freshwater organisms. Chemosphere, 299, 134373.
    Ossai, I. C., Ahmed, A., Hassan, A., & Hamid, F. S. (2020). Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environmental Technology & Innovation, 17, 100526.
    Ostracodtoxkit, F. (2001). Direct contact toxicity test for freshwater sediments. Standard operational procedure. MicroBioTest Inc., Nazareth, 35.
    Persoone, G. (1991). Cyst-based toxicity tests. I: A promising new tool for rapid and cost effective toxicity screening of chemicals and effluents. Zeitschrift für angewandte Zoologie, 78(2), 235-241.
    Persoone, G., & Wadhia, K. (2009). Comparison between Toxkit microbiotests and standard tests. In Ecotoxicological Characterization of Waste (pp. 213-220). Springer.
    Pinnavaia, T. J. (1983). Intercalated clay catalysts. Science, 220(4595), 365-371.
    Qu, M., Yuan, M., He, J., Xue, M., Ma, X., Hou, L., Zhang, T., Liu, X., & He, J. (2018). Substrate-versatile approach to multifunctional superamphiphobic coatings with mechanical durable property from quartz sand. Surface and Coatings Technology, 352, 191-200.
    Rolauffs, P., Stubauer, I., Moog, O., Zahrádková, S., & Brabec, K. (2004). Integration of the saprobic system into the European Union Water Framework Directive. In Integrated Assessment of Running Waters in Europe (pp. 285-298). Springer.
    Rosa, J., de Campos, R., Martens, K., & Higuti, J. (2020). Spatial variation of ostracod (Crustacea, Ostracoda) egg banks in temporary lakes of a tropical flood plain. Marine and Freshwater Research, 72(1), 26-34.
    Rossi, V., Bartoli, M., Bellavere, C., Gandolfi, A., Salvador, E., & Menozzi, P. (2004). Heterocypris (Crustacea: Ostracoda) from the Isole Pelagie (Sicily, Italy): hatching phenology of resting eggs. Italian Journal of Zoology, 71(3), 223-231.
    Rossi, V., Benassi, G., Belletti, F., & Menozzi, P. (2011). Colonization, population dynamics, predatory behaviour and cannibalism in Heterocypris incongruens (Crustacea: Ostracoda). Journal of Limnology, 70(1), 102.
    Ruck, J. G. (1998). Toxkit technology and New Zealand water quality guidelines. Environmental Toxicology and Water Quality: An International Journal, 13(4), 337-345.
    Ruiz, F., Abad, M., Bodergat, A.-M., Carbonel, P., Rodríguez-Lázaro, J., & Yasuhara, M. (2005). Marine and brackish-water ostracods as sentinels of anthropogenic impacts. Earth-Science Reviews, 72(1-2), 89-111.
    Rusin, M., Gospodarek, J., & Nadgórska-Socha, A. (2015). The effect of petroleum-derived substances on the growth and chemical composition of Vicia faba L. Polish journal of environmental studies, 24(5).
    Santos, M., Vicensotti, J., & Monteiro, R. (2007). Sensitivity of four test organisms (Chironomus xanthus, Daphnia magna, Hydra attenuata and Pseudokirchneriella subcapitata) to NaCl: an alternative reference toxicant. Journal of the Brazilian Society of Ecotoxicology, 2(3), 229-236.
    Sarria-Villa, R., Ocampo-Duque, W., Páez, M., & Schuhmacher, M. (2016). Presence of PAHs in water and sediments of the Colombian Cauca River during heavy rain episodes, and implications for risk assessment. Science of the Total Environment, 540, 455-465.
    Scarlatos, P. D., & Kim, H. S. (2002). On the geometry of cohesive settling flocs. In J. C. Winterwerp & C. Kranenburg (Eds.), Proceedings in Marine Science (Vol. 5, pp. 265-276). Elsevier.
    Shan, B.-Q., Zhang, Y.-T., Cao, Q.-L., Kang, Z.-Y., & Li, S.-Y. (2014). Growth responses of six leguminous plants adaptable in Northern Shaanxi to petroleum contaminated soil. Huan jing ke xue= Huanjing kexue, 35(3), 1125-1130.
    Shuhaimi-Othman, M., Yakub, N., Ramle, N.-A., & Abas, A. (2011). Toxicity of metals to a freshwater ostracod: Stenocypris major. Journal of toxicology, 2011.
    Simpson, S. L., Batley, G. E., & Chariton, A. A. (2013). ANZECC/ARMCANZ.
    Simpson, S. L., Batley, G. E., Chariton, A. A., Stauber, J. L., King, C. K., Chapman, J. C., Hyne, R. V., Gale, S. A., Roach, A. C., & Maher, W. A. (2005). Handbook for sediment quality assessment. Centre for Environmental Contaminants Research Bangor, NSW.
    Smith, A. J., & Delorme, L. D. (2010). Ostracoda. In Ecology and classification of North American freshwater invertebrates (pp. 725-771). Elsevier.
    Spencer, M., & Blaustein, L. (2001). Risk of predation and hatching of resting eggs in the ostracod Heterocypris incongruens. Journal of Crustacean Biology, 21(3), 575-581.
    Stepanova, N. Y., Nikitin, O. V., & Latypova, V. Z. (2016). Toxicity assessment of oil-contaminated sediments on ostracods (Heterocypris incongruens) in laboratory bioassays and in field mesocosm experiment. International Journal of Pharmacy and Technology, 8(4), 25096-25102.
    Struewing, K. A., Lazorchak, J. M., Weaver, P. C., Johnson, B. R., Funk, D. H., & Buchwalter, D. B. (2015). Part 2: Sensitivity comparisons of the mayfly Centroptilum triangulifer to Ceriodaphnia dubia and Daphnia magna using standard reference toxicants; NaCl, KCl and CuSO4. Chemosphere, 139, 597-603.
    Suedel, B. C., & Rodgers Jr, J. H. (1994). Development of formulated reference sediments for freshwater and estuarine sediment testing. Environmental Toxicology and Chemistry: An International Journal, 13(7), 1163-1175.
    Tessier, A., & Campbell, P. (1987). Partitioning of trace metals in sediments: relationships with bioavailability. In Ecological effects of in situ sediment contaminants (pp. 43-52). Springer.
    Topuz, B., Batmaz, F., Külköylüoğlu, O., & Çapraz, Ç. (2021). First usage of ostracod species (Herpetocypris brevicaudata) carapace as a biosorbent with XAD-4 resin to determine Co(II), Cu(II) and Mn(II) trace metal ions. Microchemical Journal, 167, 106335.
    Uddin, M. H., Shahjahan, M., Ruhul Amin, A. K. M., Haque, M. M., Islam, M. A., & Azim, M. E. (2016). Impacts of organophosphate pesticide, sumithion on water quality and benthic invertebrates in aquaculture ponds. Aquaculture Reports, 3, 88-92.
    Valls, L., Castillo-Escrivà, A., Mesquita-Joanes, F., & Armengol, X. (2016). Human-mediated dispersal of aquatic invertebrates with waterproof footwear. Ambio, 45(1), 99-109.
    Van der Heul, R. (2011). Environmental degradation of petroleum hydrocarbons
    Vandekerkhove, J., Declerck, S., Brendonck, L., CONDE‐PORCUNA, J. M., Jeppesen, E., & Meester, L. D. (2005). Hatching of cladoceran resting eggs: temperature and photoperiod. Freshwater Biology, 50(1), 96-104.
    Vannier, J., Abe, K., & Ikuta, K. (1998). Feeding in myodocopid ostracods: functional morphology and laboratory observations from videos. Marine Biology, 132(3), 391-408.
    Varol, M. (2011). Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. Journal of hazardous materials, 195, 355-364.
    Verrhiest, G., Clement, B., & Blake, G. (2001). Single and combined effects of sediment-associated PAHs on three species of freshwater macroinvertebrates. Ecotoxicology, 10(6), 363-372.
    Waste, U. S. E. P. A. O. o. S., & Response, E. (1986). Test methods for evaluating solid waste: physical/chemical methods (Vol. 1). US Environmental Protection Agency. Office of Solid Waste and Emergency Response.
    Watanabe, H., Nakajima, F., Kasuga, I., & Furumai, H. (2011). Toxicity evaluation of road dust in the runoff process using a benthic ostracod Heterocypris incongruens. Science of the Total Environment, 409(12), 2366-2372.
    Yang, F., & Antonietti, M. (2020). Artificial humic acids: sustainable materials against climate change. Advanced Science, 7(5), 1902992.
    Yang, H. J., Jeong, H. J., Bong, K. M., Jin, D. R., Kang, T.-W., Ryu, H.-S., Han, J. H., Yang, W. J., Jung, H., Hwang, S. H., & Na, E. H. (2020). Organic matter and heavy metal in river sediments of southwestern coastal Korea: Spatial distributions, pollution, and ecological risk assessment. Marine Pollution Bulletin, 159, 111466.
    Zhai, D., Xiao, J., Fan, J., Wen, R., & Pang, Q. (2015). Differential transport and preservation of the instars of Limnocythere inopinata (Crustacea, Ostracoda) in three large brackish lakes in northern China. Hydrobiologia, 747(1), 1-18.
    Zhuang, S., Lu, X., Yu, B., Fan, X., & Yang, Y. (2021). Ascertaining the pollution, ecological risk and source of metal(loid)s in the upstream sediment of Danjiang River, China. Ecological indicators, 125, 107502.

    無法下載圖示 校外公開
    2027/08/09
    QR CODE