簡易檢索 / 詳目顯示

研究生: 曾冠銘
Tseng, Kuan-Ming
論文名稱: 不同表面處理生物炭對磷酸鹽吸附行為之影響
The Effects of Application of Biochar with Different Surface Treatments on Adsorption Behaviors of Phosphate
指導教授: 簡士濠
Jien, Shih-Hao
學位類別: 碩士
Master
系所名稱: 工學院 - 水土保持系所
Department of Soil and Water Conservation
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 78
中文關鍵詞: 優養化非點源汙染生物炭磷酸鹽吸附
外文關鍵詞: Eutrophication, Non-point source pollution, Biochar, Phosphate, Adsorption
DOI URL: http://doi.org/10.6346/NPUST202200410
相關次數: 點閱:27下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 台灣坡地農業普遍,山坡地超限利用常使水庫優養化,水質劣化。為解決優養化帶來的水質污染,本研究嘗試模擬應用表面處理之生物炭於坡地土壤中,先行吸附固定非點源污染物,如磷酸鹽。本研究將未處理生物炭 (CK)以0.1 M之鹽酸進行酸洗1小時,得酸洗生物炭 (Acid-treated Biochar; ATB),且利用金屬氧化物對磷酸鹽專一性吸附之特性,將鐵共沉澱於酸洗生物炭表面上形成鐵複合生物炭 (Fe-treated biochar; FeTB),探討不同表面處理之生物炭對磷酸鹽在pH=7的環境下之吸附效能,最後應用Langmuir等溫吸附模型得出最大吸附量。
    試驗結果指出,不同表面處理生物炭之吸附量隨著初始濃度增加而提高,當P濃度為500 mg/L時,未處理之生物炭 (CK)最大吸附量為55.5 mg/g、酸洗生物炭(ATB) 為56.8 mg/g,而鐵複合生物炭 (FeTB)在相同條件下之吸附量為 327.8 mg/g。Langmuir等溫吸附模型中,不同表面處理生物炭之吸附模式皆符合此等溫吸附式,其相關係數R值皆大於0.96,且Langmuir 等溫吸附模型推估ATB和FeTB之最大吸附量為104.9 mg/g及325.8 mg/g,前者與實際實驗結果差將近50 mg/g,而後者與實際結果相近。由電子微探儀之元素分布圖可發現,FeTB於吸附後,鐵與磷酸鹽之點位重疊率高,而ATB上磷的吸附位置,主要在生物炭表面之金屬物 (鎂、鉀)上。由此可知FeTB能有效保留金屬氧化物本身對磷酸鹽之特性,並增加生物炭對磷的吸附效果。

    Agriculture on slopes is common in Taiwan, and the overuse of hillsides often leads to optimal maintenance of reservoirs and deterioration of water quality. In order to solve the water pollution caused by optimization, this thesis tried to apply biochar with different surface treatments in sloping soil to first adsorp and fix non-point source pollutants such as nitrate or phosphate.
    In this study, the untreated biochar (CK) was pickled with 0.1 M hydrochloric acid for 1 hour to obtain acid-treated biochar (Acid-treated biochar;ATB), and the iron was co-precipitated by the specific adsorption of phosphate by metal oxides. Iron-coated biochar (Fe-treated biochar;FeTB) was formed on the surface of ATB, and the adsorption efficiency of biochar with different surface treatments on phosphate was investigated when the pH was fixed (pH=7) in different initial concentrations of phosphorus addition solution. Finally, the Langmuir isotherm was used to obtain the maximum adsorption capacity (qm).
    Our results indicated that the adsorption capacity of the biochar with different surface treatments increased with the increase of initial concentration. As the initial concentration was 500 mg/L, the maximum adsorption capacity of untreated biochar (CK) was 55.5 mg/g, and the acid-washed biochar (ATB) had a maximum adsorption capacity of was 56.8 mg/g, while the adsorption capacity of iron-coated biochar (FeTB) was 327.8 mg/g under the same conditions.In Langmuir isotherm, the adsorption modes of biochars with different surface treatments are consistent with this isotherm adsorption formula, and the correlation coefficient R values are all greater than 0.96, and the maximum adsorption capacity of ATB and FeTB estimated by Langmuir isotherm is 104.9 mg /g and 325.8 mg/g, the former is nearly 50 mg/g different from the actual experimental result, while the latter is close to the actual result.
    From the Electron Probe Microanalyzer (EPMA), it can be found that after FeTB is adsorbed, the site overlap rate of iron and phosphate is high, while the adsorption site of phosphorus on ATB is mainly in the residual biochar. Metals (magnesium, potassium). It can be seen from the above that FeTB can effectively retain the characteristics of metal oxides on phosphate, and increase the adsorption effect of biochar on phosphate.

    摘要 I
    Abstract III
    謝誌 V
    目錄 VI
    表目錄 IX
    圖目錄 X
    第一章 前言 1
    第二章 文獻回顧 3
    一、地表逕流與入滲對土壤養分之影響 3
    二、磷的應用與特性 3
    (一)磷的應用及危害 3
    (二)磷酸鹽於土壤之型態 4
    (三)磷酸鹽於土壤之吸附行為 4
    三、生物炭之特性與使用 6
    四、氧化鐵之種類及吸附特性 7
    (一)氧化鐵於一般環境下之型態 7
    (二)氧化鐵種類 7
    (三)氧化鐵表面化學特性 10
    五、吸附理論 10
    (一)吸附類型 10
    (二)專一性吸附與非專一性吸附 11
    (三)等溫吸附模式 12
    (四)影響吸附因子 13
    六、吸附法去除磷酸鹽之研究 14
    (一)不同原料及溫度製成之生物炭對磷酸鹽之吸附成效 14
    (二)改性生物炭對吸附磷酸鹽之研究 16
    第三章 研究材料與方法 19
    一、實驗流程 19
    二、生物炭製備 20
    三、酸洗生物炭製作 20
    四、鐵複合生物炭製作 21
    五、供試生物炭基本性質分析 23
    (一) 物理性質分析 23
    (二) 化學性質分析 25
    六、吸附平衡實驗 39
    七、管柱淋洗試驗 39
    第四章 結果與討論 41
    一、供試生物炭之基本理化性質 41
    二、不同處理生物炭之表面觀察 43
    2-1未處理之生物炭之表面觀察 43
    2-2酸洗生物炭之表面觀察 45
    2-3鐵複合生物炭之表面觀察 47
    三、不同表面處理生物炭對水中磷酸鹽之吸附效果 49
    四、不同表面處理生物炭對磷酸鹽之滯留能力 53
    五、不同表面處理生物炭吸附磷酸鹽前後之元素分布 56
    5-1 酸洗生物炭之元素分布 56
    5-2 鐵複合生物炭之元素分布 59
    六、不同表面處理生物炭之吸附機制 62
    6-1 不同處理生物炭等電位點分析 62
    6-2 不同處理生物炭之官能基分析 64
    六、鐵複合生物炭對坡地非點源污染物之影響 68
    第五章 結論與建議 70
    一、結論 70
    二、建議 70
    參考文獻 71
    作者簡介 78

    1. 余佳敏,趙宇,肖勇,江鴻,張建會,余祥文,2019,「烟秆基磁性生物炭复合材料的制备、表征及吸附性能」,江蘇農業科學,第47卷,第9期,第257-262頁。
    2. 李雨寰,2013,以活性氧化鋁改質Fe3O4以應用於吸附水中磷酸鹽,碩士論文,國立宜蘭大學,環境工程學系,宜蘭。
    3. 金映君,2006,檸檬酸鹽/Fe(III)、矽酸鹽/Fe(III)合成氧化鐵吸附砷之研究,碩士論文,國立中山大學,海洋環境及工程學系,高雄。
    4. 胡小蓮,楊林章,何世穎,馮彥房,周玉玲,2018,「Fe3O4/BC複合材料的製備及其吸附除磷性能」,環境科學研究,第31卷,第1期,第143-153頁。
    5. 張進祥,2008,纖鐵礦及水合鐵礦吸附水中磷酸鹽之研究,碩士論文,國立中山大學,環境工程與科學系,高雄。
    6. 賴進興,1995,氧化鐵覆膜濾砂吸附過濾水中銅離子之研究,博士論文,國立台灣大學,環境工程學系,台北。
    7. 鍾瑞嬰,2003,磷酸根及重金屬離子在針鐵礦上之吸附平衡,碩士論文,元智大學,化學工程學系,桃園。
    8. Alhujaily A., Mao Y. Z., Zhang J. L., Ifthikar J., Zhang X. Y., and Ma F. Y., 2020, “Facile fabrication of Mg-FeTB adsorbent derived from spentmushroom waste for phosphate removal,” Journal of the Taiwan Institute of Chemical Engineers, Vol. 117, pp. 75-85.
    9. Antunes E., Vuppaladadiyam A. K., Kumar R., Vuppaladadiyam V. S.S., Sarmah A., Islam M. A., and Dada T., 2022, “A circular economy approach for phosphorus removal using algae biochar,” Cleaner and Circular Bioeconomy, Vol. 1, Article 100005.
    10. Black C. A., 1965, Methods of soil analysis. Part 2.
    11. Bremner, J. M., 1996. Chapter 37 –Nitrogen –Total,” In “Methods of Soil Analysis.Part 3. Chemical Methods,” SSSA Book Series No. 5, pp. 1085-1122.
    12. Delaney P., McManamon C., Hanrahan J. P., Copley M. P., Holmes J. D., and Morris M. A., 2011, “Development of chemically engineered porous metal oxides for phosphate removal,” Journal of Hazardous Materials, Vol. 185, No. 1, pp. 382-391.
    13. Epsztein R. , Nir O., Lahav O., and Green M., 2015, “Selective nitrate removal from groundwater using a hybrid nanofiltration–reverse osmosis filtration scheme,” Chemical Engineering Journal, Vol. 279, pp. 372-378.
    14. Gardner, W. H., 1986. Water content,” In: A. Klute, G.S. Campell, R.D. Jackson, M.M. Mortland, and D.R. Nielsen(eds.) “Methods of soil analysis. Part 1. Physical and mineralogical method,” Agronomy monograph No. 9. ASA and SSSA, Madison, Wisconsin, USA., pp. 493-544.
    15. Gulicovski J. J., Čerović L. S., and Milonjić S. K.,2008, “Point of Zero Charge and Isoelectric Point of Alumina,” Materials and Manufacturing Processes, Vol. 23, No. 6, pp. 615-619.
    16. Haynes, R. J. and Swift R. D., 1985, “Effect of liming and air-dring on the adsorption of phosphate by some acid soil,” J. Soil Sci., Vol. 36, pp. 513-521.
    17. He S. B., Xue G., and Wang B. Z., 2009, “Factors affecting simultaneous nitrification and de-nitrification (SND) and its kinetics model in membrane bioreactor,” Journal of Hazardous Materials, Vol 168, No. 2-3, pp. 704-710.
    18. Huang H, Zhang P, Zhang Z, Liu J, Xiao J, and Gao F., 2016, “Simultaneous removal of ammonia nitrogen and recovery of phosphate from swine wastewater by struvite electrochemical precipitation and recycling technology,” J Clean Prod, Vol. 127, pp. 302–310.
    19. Jin B., Wang L., Ma P., Fu L., Xie X., and Jiang, W. , 2020, “Air pre-oxidation induced high yield N-doped porous biochar for improving toluene adsorption,” Chem. Eng. J., Vol. 385, Article 123843.
    20. Kasim N.Z., Malek N. A. A. A., Anuwar N. S. H., and Hamid N.H., 2020, “Adsorptive removal of phosphate from aqueous solution using waste chicken bone and waste cockle shell,” Mater. Today. Proc., Vol. 31, pp. A1-A5.
    21. Kuo, S., 1996. Phosphorus,” In: Sparks, D L et al. (Eds.). Methods of Soil Analysis, Part 3: Chemical methods. SSSA Book Series No. 5, Madison, WI: SSSA, 1996, pp. 869-919.
    22. Le Bissonnais, Y., 1996. Aggregate stability and assessment of crustability and erodibility: 1. theory and methodology,” European Journal of Soil Science, Vol. 47, No. 4, pp. 425-437.
    23. .Lehmann, J., 2007, “Bio‐energy in the black,” Frontiers in Ecology and the Environment, Vol. 5, No. 7, pp. 381-387.
    24. Lehmann, J., de Silva, J.P. Jr, Steiner, C., Nehls, T., Zech, W., and Glaser, B.,2020, “Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol og the central Amazon basin: fertilizer, manure and charcoal amendment, ” Plant and soil, Vol. 249, pp. 343-357.
    25. Li J., Liang N.I., Jin X., Zhou D., Li H., Wu M., and Pan B.O., 2017, “The role of ash content on bisphenol A sorption to biochars derived from different agricultural wastes,” Chemosphere, Vol. 171, pp. 66-73.
    26. Liang J. S., Ye J. P., Shi C., Zhang P. Y., Guo J. B., Zubair M., Chang J. N., and Zhang L., 2022, “Pyrolysis temperature regulates sludge-derived biochar production, phosphate adsorption and phosphate retention in soil,” Journal of Environmental Chemical Engineering. Vol. 10, No. 3, Article 107744.
    27. Lin Z. Y., He L., Zhou J., Shi S. H., He X. J., Fan X., Wang Y. M., and He Q., 2022, “Biologically induced phosphate precipitation in heterotrophic nitrification processes of different microbial aggregates: Influences of nitrogen removal metabolisms and extracellular polymeric substances,” Bioresource Technology, Vol. 356, Article 127319.
    28. Liu H. B., Shan J. H., Chen Z. B., and Lichtfouse E., 2021, “Efficient recovery of phosphate fromsimulated urine by Mg/Fe bimetallic oxide modified biochar as a potential resource,” Science of the Total Environment, Vol. 784, Article 147546.
    29. Liu J. H., Xu K., Xiong H., Pei C. W., Yan W., and Li X., 2019, “Temperature-directed synthesis of N-doped carbon-based nanotubes and nanosheets decorated with Fe (Fe3O4, Fe3C) nanomaterials,” Nanoscale, Vol.11, No.18, pp. 9155-9162.
    30. Liu R., Shen J., He X., Chi L., and Wang X., 2020, “Efficient macroporous adsorbent for phosphate removal based on hydrate aluminum-functionalized melamine sponge,” Chem. Eng. J., Vol. 421, Part 2, Article 127848.
    31. Lu C. N. and Liu J.C., 2010, “Removal of phosphate and fluoride from wastewater by a hybrid precipitation-microfiltration process,” Sep Purif Technol, Vol. 74, pp. 329-335.
    32. Luo F., Feng X., Li Y., Zheng G., Zhou A., Xie P., Wang Z., Tao T., Long X., and Wan J., 2021, “Magnetic amino-functionalized lanthanum metal-organic framework for selective phosphate removal from water,” Colloids Surf. A Physicochem. Eng. Asp., Vol. 611, Article 125906
    33. Mclaughlin, J. R., Ryden J. C. and Syers, J. K., 1981, “Sorption of inorganic phosphate by iron and aluminum containing components,” J. Soil Sci., Vol. 32, pp. 365-377.
    34. McLean, E. O., 1982. Soil pH and lime requirement,” In A.L. Page, R.H. Miller and D.R. Keeney (eds.) “Methods of soil analysis, Part 2. Chemical and microbiological properties,” Agronomy monograph No. 9. ASA and SSSA, Madison, Wisconsin, USA., pp.199-244.
    35. Mohan D., Sarswat A., Ok Y.S., C.U., 2014, “Pittman Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent - a critical review.Bioresour,” Technol., Vol. 160, pp. 191-202.
    36. Monballiu A., Ghyselbrecht K., Pinoy L, and Meesschaert B., 2020, “Phosphorous recovery as calcium phosphate from UASB effluent after nitrification with or without subsequent denitrification,” Journal of Environmental Chemical Engineering, Vol. 8, No. 5, Article 104119.
    37. Mulvaney, R. L., 1996. Nitrogen-Inorganic forms” In: Sparks D L et al. (Eds.) “Methods of Soil Analysis. Part 3: Chemical Methods,” SSSA Book Series No. 5, Madison, WI: SSSA, pp. 1123-1184.
    38. Nie G., Wu L., Du Y., Wang H., Xu Y., Ding Z., and Liu Z., 2019, “Efficient removal of phosphate by a millimeter-sized nanocomposite of titanium oxides encapsulated in positively charged polymer,” Chem. Eng. J., Vol. 360, pp. 1128-1136.
    39. Qiu S. K., Zhao D., Feng Y. Y., Li M. M., Liang X. F, Zhang L. S., Luo Y., Zhang K. Q., and Wang F., 2022, “Adsorption performance and mechanism of Ca–Al-LDHs prepared by oyster shell and pop can for phosphate from aqueous solutions,” Journal of Environmental Management. Vol. 303, Article 114235.
    40. Rahman S., Chanaka M. N., Naba K. D., Alchouron J., Reneau P., Stokes S., Thirumalai R. V.K.G., Perez F., Hassan E. B., Mohan D, Charles U. Jr. P., and Mlsna T., 2021, “High capacity aqueous phosphate reclamation using Fe/Mg-layereddouble hydroxide (LDH) dispersed on biochar,” Journal of Colloid and Interface Science. Vol. 597, pp. 182-195.
    41. Rhoades, J. D., 1982. Cation exchange capacity,” In Page, A. L., Miller, R. H., and Keeney, D. R. (ed.) “Methods of soil and analysis, Part 2. Chemical and microbiological properties,” Agronomy monograph No. 2. ASA and SSSA, Madison, Wisconsin, USA., pp. 149-158.
    42. Rhoades, J. D., 1982. Soluble salts,” In Page, A. L., Miller, R. H., and Keeney, D. R. (ed.) Methods of soil analysis, Part 2. 2nd ed. ASA and SSSA, Madison, WI, USA., p. 167-179.
    43. Sah, R. N., Milkkelsen D. S and Hafez A. A., 1989, “Phpsphorus behavior in flooded-drained soil. II. Iron teansformation and phosphate sorption,” Soil Sci. Soc. Am. J., Vol. 53, pp. 1732-1729.
    44. Sposito G., 1989, “ The Chemistry of Soil. ”Oxford Univ. press, New York.
    45. Tan X. F., Liu Y. G., Zeng G. M., Wang X., Hu X.J., Gu Y.L., and Yang Z.Z., 2015, “Application of biochar for the removal of pollutants from aqueous solutions,” Chemosphere, Vol. 125, pp. 70-85
    46. Thomas, G. W., 1982. Exchangeable Cations,” In A.L. Page, R.H. Miller and D.R. Keeney (ed.) “Methods of soil and analysis, Part 2. Chemical and microbiological properties,” Agronomy monograph No. 2. ASA and SSSA, Madison, Wisconsin, USA., pp. 159-165.
    47. U.S. Environmental Protection Agency. Vol. Report 440/5-86-001
    48. Uzun O., Gokalp Z., Irik H. A., Varol I. S., and Kanarya F. O., 2021, “Zeolite and pumice-amended mixtures to improve phosphorus removal efficiency of substrate materials from wastewaters,” Journal of Cleaner Production. Vol. 317, Article 128444.
    49. Xu X., Cheng Y., Wu X., Fan P., and Song R., 2020, “La(III)-bentonite/chitosan composite: a new type adsorbent for rapid removal of phosphate from water bodies. ” Appl. Clay Sci., Vol. 190, Article 105547.
    50. Yao Y., Gao B., Chen J. J, Zhang M., Inyang M., Li Y. C., Alva A., and Yang L. Y., 2013, “Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: Characterization and phosphate removal potential,” Bioresource Technology. Vol. 138, pp. 8-13.
    51. Zhao Y., Guo L., Shen W., An Q., Xiao Z., Wang H., Cai W., Zhai S., and Li Z., 2020, “Function integrated chitosan-based beads with throughout sorption sites and inherent diffusion network for efficient phosphate removal,” Carbohydr. Polym., Vol. 230, Article 115639.

    下載圖示
    QR CODE