簡易檢索 / 詳目顯示

研究生: 杜權家
Du, Cyuan-Jia
論文名稱: 運用粉末燒結技術合成骨科植入物用高孔隙率Ti塗層之研究
Synthesis and Characterization of Ti Coatings with high porosity for Orthopedic Implants via Powder Sintering Techniques
指導教授: 洪廷甫
Hong, Ting-Fu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料工程研究所
Graduate Institute of Materials Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 72
中文關鍵詞: 粉末燒結多孔結構仿生結構骨科植入物
外文關鍵詞: powder metallurgy,, bionic structure, porous structure, titanium, orthopedic implants
DOI URL: http://doi.org/10.6346/NPUST202300006
相關次數: 點閱:46下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 本研究主要探討以粉末燒結法製備鈦多孔結構塗層,使用4種不同粉徑以及型態的鈦粉末進行搭配,在Ti-6Al-4V ELI基材上製備多孔結構。再對多孔塗層進行表面形貌、化學成分、塗層微結構、粗糙度、以及機械強度進行分析。

    研究結果顯示,純鈦粉末在基材上經塗佈及燒結製程後,可製備高孔隙率之塗層。而透過不同粉徑及型態的搭配,可發現使用不規則粉末進行塗佈之孔隙率較圓珠粉末高,且上層使用不規則粉末可有效增加其粗糙度,而上層使用相同粉徑之不規則粉末可獲得相近的粗糙度。最後,成功於Ti-6Al-4V ELI基材上產生多孔結構塗層,而使用不規則粉末進行塗佈將可望增進試件表面之孔隙率、孔徑尺寸與粗糙度。

    The purpose of this study is to fabricate porous titanium structure coatings by powder metallurgy. To fabricate porous titanium structure coatings was used four types titanium powder include beads and irregular powder on Ti-6Al-4V ELI substrate. The coating surface morphology, chemical composition, thickness, porosity, pore size, roughness and mechanical properties of the sample were characterized via various techniques.
    The research results show that using pure titanium powder coating on Ti-6Al-4V ELI substrate can fabricate high porosity coating. Through different powder diameters and types, the porosity of coating with irregular powder is higher than beads, and using irregular powder on the upper layer can effectively increase its roughness, and using same diameters powder can obtain similar roughness. At the end, Porous structure coating was successfully applied to Ti-6Al-4V ELI substrate, to enchancing their porosity , pore size, and roughness.

    摘要 I
    Absrtact II
    謝誌 III
    目錄 IV
    表目錄 VI
    圖目錄 VII
    1. 前言 1
    2. 文獻回顧 3
    2.1 生醫材料 3
    2.2 鈦及鈦合金 5
    2.3 多孔結構應用於生醫植入物 8
    2.4 研究動機與目的 20
    3. 實驗方法與設備 21
    3.1 實驗方法 21
    3.2 實驗儀器與設備 25
    4. 結果與討論 33
    4.1 塗佈原料分析 33
    4.1.1 鈦粉末原料之特徵分析 33
    4.1.2 塗佈黏結劑之熱重分析 36
    4.2 鈦多孔結構塗層之表面形貌特性 37
    4.3 鈦多孔結構塗層之成分分析 40
    4.4 鈦多孔結構塗層之多孔結構分析 42
    4.4.1 塗層之OM剖面形貌分析 42
    4.4.2 塗層孔隙率分析 45
    4.4.3 塗層孔徑尺寸分析 46
    4.5 表面粗糙度分析 48
    4.5.1 鈦多孔結構塗層之表面粗糙度分析 48
    4.5.2 鈦多孔結構塗層之雷射顯微鏡分析 50
    4.6 塗層機械性質分析 54
    4.6.1 塗層抗拉強度分析 54
    4.6.2 塗層抗剪強度分析 58
    5. 結論 63
    6. 未來研究 65
    參考文獻 66

    [1] 梁志光,盧玉強,林育德,林清煌,周明岳,林妙璦,2008,「高齡化社會老年病人之醫療照護」,榮總護理,第25卷,第1期,第 6-11頁。
    [2] 陳筱筠,2008,園藝治療應用於老人身心健康改善之研究-以屏東縣潮州鎮孝愛仁愛之家為例,碩士論文,國立屏東科技大學,景觀暨遊憩管理研究所,屏東
    [3] I.H. Oh, N. Nomura, N. Masahashi, S.Hanada, 2003, “Mechanical properties of porous titanium compacts prepared by powder sintering,” Scripta Materialia, Vol 49, Issue 12, pp. 1197-1202.
    [4] J.A. Dubin, G.H. Westrich, 2020, ” A matched cohort study between cementless TKA and cemented TKA shows a reduction in tourniquet time and manipulation rate,” Journal of Orthopaedics, Vol. 21, pp. 532-536
    [5] FDA Guidance, 1994, ”Guidance Document for Testing Orthopedic Implants With Modified Metallic Surfaces Apposing Bone Or Bone Cement,” 2020-D-0957, Rockville, Maryland.
    [6] ASTM, 2016, “Standard Specification for Femoral Prostheses—Metallic Implants,” F2068-15, West Conshohocken, PA.
    [7] I. S. Maggiano, C. M. Maggiano, and D. M. Cooper, 2021, “Osteon circularity and longitudinal morphology: Quantitative and qualitative three-dimensional perspectives on human Haversian systems,” Micron, Vol. 140.
    [8] 李世普,2000,生物醫用材料導論,武漢理工大學出版社,武漢,第 1-2 頁。
    [9] 李世普,2000,生物醫用材料導論,武漢理工大學出版社,武漢,第 52 頁。
    [10] D. Puppi, F. Chiellini, A.M. Piras, and E. Chiellini, 2010, “Polymeric materials for bone and cartilage repair,” Progress in Polymer Science, Vol. 35, No. 4, pp. 403-440.
    [11] S. Punj, J. Singh, and K. Singh, 2021, “Ceramic biomaterials: Properties, state of the art and future prospectives,” Ceramics International, Vol. 47, No. 20, pp. 28059-28074
    [12] 劉彥義,2016,鈦合金表面多孔結構製備與微弧氧化改質處理,碩士論文,國立屏東科技大學,屏東。
    [13] L. L. Hench, and E. C. Ethridge, 1972, Biomaterials: an interfacial approach, Academic Press, Inc.
    [14] H.S. Dobbs, and M.J. Minski, 1980, “Metal ion release after total hip replacement,” Biomaterials, Vol. 1, No. 4, pp. 193-198.
    [15] M. M. Dewidar, H. C. Yoon, and J. K. Lim, 2006, “Mechanical properties of metals for biomedical applications using powder metallurgy process: A review,” Metals and Materials International, Vol. 12, No. 3, pp. 193-206.
    [16] L. Rony, R. Lancigu, and L. Hubert, 2018, “Intraosseous metal implants in orthopedics: A review,” Morphologie, Vol 102, No. 339, pp. 231-242.
    [17] M. Geeth, A. K. Singh, R. Asokamani, and A. K. Gogia, 2009, “Ti based biomaterials , the ultimate choice for orthopaedic implants – A review,” Prog. Mater. Sci., Vol. 54, No. 3, pp. 397-425.
    [18] 劉永琴,1992,輕金屬冶金分析,冶金工業出版社,北京,第 200-201頁。
    [19] 李祥宇,2012,氧化鋁/氧化釔/氧化鋯複合材料與液態鈦合金(Ti-6Al-4V)之介面反應,碩士論文,國立交通大學,材料科學與工程學系,新竹。
    [20] R.R. Boyer, 1996, “An overview on the use of titanium in the aerospace industry,” Materials Science and Engineering: A, Vol. 213, No. 1–2, pp. 103–114.
    [21] 卓虹君,2016,田口法於生醫鈦基合金進行光纖雷射表面改質之最佳化分析,碩士論文,國立屏東科技大學,屏東。
    [22] L. Qi, X. Qiao, L. Huang, X. Huang, W. Xiao, and X. Zhao, 2019, “Effect of cold rolling deformation on the microstructure and properties of Ti-10V-2Fe-3Al alloy,” Materials Characterization, Vol. 155.
    [23] ASTM, 2017, “Standard Specification for Unalloyed Titanium, for Surgical Implant Applications,” F67–13, West Conshohocken, PA.
    [24] K. Ronoh, F. Mwema, S. Dabees, D. Sobola, 2022, “Advances in sustainable grinding of different types of the titanium biomaterials for medical applications: A review,” Biomedical Engineering Advances, Vol.4.
    [25] 吳柏勳,2014,光纖雷射-鹼熱表面處理對純鈦與Ti-6Al-4V表面性質影響之研究,碩士論文,國立屏東科技大學,屏東。
    [26] X. Liu, P.K. Chu, C. Ding, 2004, “Surface modification of titanium, titanium alloys, and related materials for biomedical applications,” Materials Science and Engineering: R: Reports, Vol. 47, Issues 3-4, pp.49-121.
    [27] C.Y. Wang, M. Mobedi, and F. Kuwahara, 2019, “Analysis of local thermal non-equilibrium condition for unsteady heat transfer in porous media with closed cells: Sparrow number,” International Journal of Mechanical Sciences, Vol. 157–158, pp. 13-24.
    [28] H. Liu, and X. Zhao, 2022, “Thermal Conductivity Analysis of High Porosity Structures with Open and Closed Pores,” International Journal of Heat and Mass Transfer, Vol. 183, Part A.
    [29] D. Sławiński, M. Soszko, W. Tokarz, M. Gliński, and S. Bykuć, 2022, “Numerical study of a porous open channel for the proton-exchange membrane fuel cell,” International Journal of Hydrogen Energy, Vol. 47, No. 26, pp. 13087–13100.
    [30] L. Avraham, R. A. Sanguramath, O. Chen, L. Perry, S. Levenberg, and M. S. Silverstein, 2022, “Polysaccharide-based, emulsion-templated, porous poly(urethane urea)s: Composition, catalysis, cell growth,” European Polymer Journal, Vol. 169.
    [31] A. Kennedy, 2012, Porous Metals and Metal Foams Made From Powders, Metallurgy.
    [32] L.J. Gibson, M. F. Ashby, and B. A. Harley, 2010, Cellular Materials in Nature and Medicine, Cambridge University.
    [33] E. F. Morgan, G. U. Unnikrisnan, and A. I. Hussein, 2018, “Bone Mechanical Properties in Healthy and Diseased States,” Annual Review of Biomedical Engineering, Vol. 20, NO. 1, p.p 119-143.
    [34] J. Qin, Q. Chen, C. Yang, and Y. Huang, 2016, “Research process on property and application of metal porous materials,” Journal of Alloys and Compounds, Vol. 654, pp. 39–44.
    [35] K. Haase, and G. Rouhi, 2013, “Prediction of stress shielding around an orthopedic screw: Using stress and strain energy density as mechanical stimuli,” Computers in Biology and Medicine, Vol. 43, No. 11, pp. 1748-1757.
    [36] S. Wu, X. Liu, K.W.K. Yeung, C. Liu, X.Yang, 2014, “Biomimetic porous scaffolds for bone tissue engineering,” Materials Science and Engineering: R: Reports, Vol. 80, pp. 1-36.
    [37] A. Goharian, and M. R. Abdullah, 2017, Bioinert Metals (Stainless Steel, Titanium, Cobalt Chromium), in Trauma Plating Systems, pp.115-142.
    [38] C. D. Han, C. W. Han, and I. H. Yang, 2009, “Femoral Component Fracture Due to Osteolysis After Cemented Mobile-Bearing Total Knee Arthroplasty,” The Journal of Arthroplasty, Vol. 24, No. 2, pp. 323.e7-323.e12.
    [39] E. Sánchez, C. Schilling, T. M. Grupp, A. Giurea, N. Verdonschot, and D. Janssen, 2021, “No effect in primary stability after increasing interference fit in cementless TKA tibial components,” Journal of the Mechanical Behavior of Biomedical Materials, Vol. 118.
    [40] X. Li, M. Dong, D. Jiang, S. Li, Y. Shang, 2020, “The effect of surface roughness on normal restitution coefficient, adhesion force and friction coefficient of the particle-wall collision,” Powder Technology, Vol. 362, pp. 17-25.
    [41] 許世昌,2013,新編解剖學,永大書局,台北,第 108-114頁。
    [42] ASTM, 2017, “Standard Test Method for Tension Testing of Calcium Phosphate and Metallic Coatings,” F1147-05, West Conshohocken, PA
    [43] ASTM, 2017, “Standard Test Method for Shear Testing of Calcium Phosphate Coatings and Metallic Coatings,” F1044-05, West Conshohocken, PA.
    [44] K. Asaoka, N. Kuwayama, O. Okuno, and I, Miura, 1985, “Mechanical properties and biomechanical compatibility of porous titanium for dental implants,” Journal of Biomedical Materials Research, Vol. 19, No. 6, p.p. 699-713.
    [45] H. Ronningen, L.F. Solhelm, and N. Landgeland, 1984, “Invasion of bone into porous fiber metal implants in cats,” Acta Orthopaedica Scandinavica, Vol. 55, No. 3, p.p 352-358.
    [46] 黃坤祥,馮慶芬,2007,粉末冶金學,新文京開發出版股份有限公司,台北,第 299-315 頁。
    [47] A.R. Contreras, M. Punset, J.A. Calero, F.J. Gil, and E. Ruperez, J.M. Manero, 2021, “Powder metallurgy with space holder for porous titanium implants: A review,” Journal of Materials Science & Technology, Vol. 76, pp. 129–149.
    [48] G. Ryan, A. Pandit, and D.P. Apatsidis, 2006, “Fabrication methods of porous metals for use in orthopaedic applications,” Biomaterials, Vol. 27, No. 13, pp.2651–2670.
    [49] G.S. Upadhyaya, 1999, Sintered Metallic and Ceramic Materials, John Wiley & Sons.
    [50] Y. Torres, B. Begines, A.M. Beltrán, and A.R. Boccaccini, 2021, “Deposition of bioactive gelatin coatings on porous titanium: Influence of processing parameters, size and pore morphology,” Surface and Coatings Technology, Vol. 421.
    [51] D.P. Mondal, M. Patel, S. Das, A.K. Jha, H. Jain, G. Gupta, and S.B. Arya, 2014, “Titanium foam with coarser cell size and wide range of porosity using different types of evaporative space holders through powder metallurgy route,” Materials & Design, Vol. 63, pp. 89-99.
    [52] T. F. Hong, Z. X. Guo, and R. Yang, 2008, “Fabrication of porous titanium scaffold materials by a fugitive filler method,” Journal of materials science: materials in medicine, Vol. 19, No. 12, pp. 3489-3495.
    [53] Y. Torres, S. Lascano, J. Bris, J. Pavón, and J. A. Rodriguez, 2014, “Development of porous titanium for biomedical applications: A comparison between loose sintering and space-holder techniques,” Materials Science and Engineering: C, Vol. 37, pp. 148-155.
    [54] H. Hahn, and W. Palich, 1970, “Preliminary evaluation of porous metal surfaced titanium for orthopedic implants,” Journal of biomedical materials research, Vol. 4, No. 4, pp. 571-577.
    [55] A. N. Aufa, M. Z. Hassan, and Z. Ismail, 2022, “Recent advances in Ti-6Al-4V additively manufactured by selective laser melting for biomedical implants: Prospect development,” Journal of Alloys and Compounds, Vol. 896.
    [56] M. Fousová, D. Vojtěch, J. Kubásek, E. Jablonská, and J. Fojt, 2017, “Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process,” Journal of the Mechanical Behavior of Biomedical Materials, Vol. 69, pp. 368-376.
    [57] K. Oishi, R. Inoue, Y. Yamamoto, Y. Harada, E. Sasaki, and Y. Ishibashi, 2021, “Assessment of Early Biological Fixation of Cementless Tapered-Wedge Stems Using Digital Tomosynthesis,” The Journal of Arthroplasty, Vol. 36, No. 9, pp. 3209-3213.
    [58] ASTM, 2016, “Standard Test Method for Stereological Evaluation of Porous Coatings on Medical Implants,” F1854–15, West Conshohocken, PA.
    [59] ISO, 1996, “Geometrical Product Specifications (GPS) - Surface texture: Profile method - Rules and procedures for the assessment of surface texture,” 4288-1996, Switzerland.
    [60] ISO, 2019, “Geometrical Product Specifications (GPS) – Surface texture: areal,” 52178-600, Switzerland.
    [61] W. James Stemp, Danielle A. Macdonald, Matthew A. Gleason, 2019, “Testing imaging confocal microscopy, laser scanning confocal microscopy, and focus variation microscopy for microscale measurement of edge cross-sections and calculation of edge curvature on stone tools: Preliminary results,” Journal of Archaeological Science: Reports, Vol. 24, pp. 513–525.
    [62] X. Feng, G. Li, 2022, “UV curable, flame retardant, and pressure-sensitive adhesives with two-way shape memory effect,” Polymer, Vol. 429.
    [63] F. Dong, Y. Qian, X. Xu, H. Shaghaleh, L. Guo, H. Liu, S. Wamg, 2021, “Preparation and characterization of UV-curable waterborne polyurethane using isobornyl acrylate modified via copolymerization,” Polymer Degradation and Stanility, Vol. 184.
    [64] Y. Duan, W. Zhang, W. Wang, L. Shi, 2021, “Studies on mutual diffusion between Mo and α-Ti during thermal evaporation,” Vacuum, Vol. 187.
    [65] R. O. Suzuki, M. Aizawa, K. Ono, 1999, “Solid-state deoxidation of niobium by vacuum-deposited titanium,” Journal of Alloys and Compounds, Vol. 284, Issues 1-2, pp. 222-227.
    [66] A. M. Mitrašinović, R. J. C. D'Souza, 2016, “Effect of initial temperature on actual elemental evaporation rate in Al-Si-Cu mixture during free cooling in near-vacuum conditions,” Vacuum, Vol. 134, pp.99-102.
    [67] M. Zheng, H. Zhang, Y. Gao, Y. Zhao, C. Tan, X. Song, and J. Yang, 2022, “Influence of porous high entropy alloy coating on wetting behavior and interfacial microstructure of Al-Si alloy on steel substrate,” Journal of Alloys and Compounds, Vol. 912.
    [68] J. Berglond, C. A. Brown, B. G. Rosen, N. Bay, 2010, “Milled die steel surface roughness correlation with steel sheet friction,” CIRP Annals, Vol. 59, Issue 1, pp. 577-580.

    無法下載圖示 校外公開
    2028/01/07
    QR CODE