簡易檢索 / 詳目顯示

研究生: 蔡偐斌
Cai, Yan-Bin
論文名稱: 以硫酸鹽還原菌降解工業廢液及生活污水處理廠之污泥厭氧消化以回收硫化氫之可行性評估
Feasibility study of recovering hydrogen sulfide by sulfate reducing bacteria from industrial waste and anaerobic digester of domestic wastewater treatment plants
指導教授: 郭文健
Kuo, Wen-Chien
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程與科學系所
Department of Environmental Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 100
中文關鍵詞: 硫酸根還原菌異丙醇硫化氫厭氧生物濾床
外文關鍵詞: Sulfate Reducing Bacteria, IPA, Hydrogen Sulfide, Anaerobic Filter
DOI URL: http://doi.org/10.6346/NPUST202300012
相關次數: 點閱:30下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 本計畫探討化工廠廢水中二甲基亞碸(DMSO)是否能作為碳源提供化學需氧量(COD),供硫酸鹽還原菌(Sulfate-reducing bacteria, SRB)利用,並且透過液鹼吸收、產出可回收的硫化鈉(Na2S)。同時,因民間企業與民生污水處理廠對於硫化氫有不同的見解與需求,亦將探討四間污水廠以及一間生質能源中心,建立硫平衡與評估探討污水廠常見硫化氫濃度過高問題以及是否具回收之潛力。

    本試驗以不同基質與不同COD/SO42--S比例下,進行兩次BSP test,第一次BSP test將碳源改為工業廢水中常見之DMSO,試驗能否供SRB菌作為碳源利用。經第一次BSP test得知DMSO因其特性無法利用COD檢測方法測得,故利用總有機碳( Total Organic Carbon, TOC )檢測方法,換算COD來得知DMSO實際COD量,而控制組蔗糖COD: SO42--S比例為10:1和5:1,COD去除率為19.2%和15.3%,SO42--S去除率分別為52.9%以及43.3%,結果說明比例10:1比5:1為佳,由於試驗期間未檢測硫化物,因此無法得知是否有硫化物抑制,第二次BSP test得知DMSO可以作為碳源供微生物利用,與SO42--S比例多寡無關,代表DMSO不是被SRB利用。

    厭氧濾床試驗分為兩階段,第一階段利用蔗糖作為碳源,藉SRB將硫酸鹽還原為硫化物後回收,透過屏科大後山建制的厭氧濾床模型(Anaerobic Filter, AF),我們以兩種比例COD:SO42--S = 6,000:1,200與COD:SO42--S = 6,000:600,作為進料濃度試驗,比例為(COD:SO42--S = 6,000:600)的硫酸鹽去除率為41.4%,高於比例為(COD:SO42--S=6,000:1,200)的硫酸鹽去除率26.6%,得知SRB於6,000:600的濃度比例下去除率較佳。第二階段利用DMSO作為碳源,COD去除率與SO42--S去除率比例皆不影響,因DMSO降解速率太快,導致SRB菌還沒利用就往氣相形成DMS (Dimethyl sulfate),因此從結果判斷純DMSO是可以被厭氧系統消耗,可是無法被SRB作為碳源利用。在相同邏輯之下生活污水中之硫酸鹽,在進行污泥厭氧消化之同時,是否可以利用汙泥中之有機物提供能量還原硫酸鹽獲得硫化氫,也是值得探討。因此本計畫亦探討四間民生污水廠以及一間生質能源中心,評估實廠消化系統中硫的影響,和污水廠潛在硫化氫濃度以及是否具回收價值問題。從五間實廠分析硫平衡說明,以污水廠原水總硫觀察,初步判斷大部分的硫,透過以溶解性硫酸鹽形式,在廢水裡往出流排放,大約占98%以上,而只有少部分不到2%的硫酸鹽,跟著污泥往厭氧消化槽,因此如果要將化工廠的模式,透過厭氧消化槽SRB菌,還原廢液裡高濃度的硫酸鹽,產出的硫化氫再經液鹼吸收,而回收硫化鈉,套用在污水廠的高廢水量,低濃度的硫酸鹽,不具有回收循環經濟價值。

    This project investigated feasibility of using DMSO (Dimethyl sulfoxide) in the industrial wastewater as the electron donor for SRB to reduce sulfate into sulfide, and then through the absorption of base to recover Na2S. Under the same strategy, 4 digesters from domestic wastewater treatment plants and 1 bioenergy plant fed raw kitchen waste were investigated to study the possibility of recovering hydrogen sulfide.

    In this study, 2 BMP tests were conducted using different substrates under different COD/SO42--S ratios to evaluate efficiency of sulfate reduction to sulfide. The first BMP results show that, DMSO can not be measured using COD analysis. Therefore, the TOC method was used to measure the DMSO and then find out the COD of DMSO. In the control group fed sucrose, under COD: SO42--S = 10:1and 5:1, removal efficiencies of COD were 19.2% and 15.3%, and removal efficiencies of SO42--S were 52.9% and 43.3%, respectively. These show that performance of COD: SO42--S = 10:1 were better than 5:1. The second BMP results show that, DMSO can serve as the carbon source for the microbial growth, and there was no relationship between the removal efficiencies of DMSO/SO42--S ratio, indicating that DMSO might not be utilized by SRB.
    The anaerobic filter experiment was conducted in two stages. In the first stage, sucrose was the carbon source for SRB to reduce sulfate to sulfide. Under two dffevent ratios of COD:SO42--S = 6,000:1,200 and 6,000:600, the removal efficiency of sulfate for the later was 41.4%, better than the former of 26.6%. In the second stage of the test, DMSO was used as the carbon source. There was no relationship between removal efficiency of COD and sulfate. It was found that, degradation rate of DMSO was so fast that, before the SRB can utilize the DMSO it was transformed into gas form of DMS (Dimethyl sulfate). This indicated that DMSO might be utilized by the anaerobic microorganisms, but not by the SRB. Under the same strategy, the possibility of recovering sulfide from sulfate reduction by SRB from anaerobic digestion of domestic wastewater plants was also investigated. Four digesters from domestic wastewater treatment plants and 1 bioenergy plant fed raw kitchen waste were investigated to study the possibility of recovering hydrogen sulfide. From the cases of WWTPs, over 98% of the influent sulfate was discharged with the effluent, and only less than 2% of the influent sulfate ended up in the digester. If the chemical plant mode is going to apply in the domestic WWTP, recovery of sulfide from reduction of sulfate in the influent will not be economically feasible.

    摘要 I
    Abstract III
    謝誌 V
    目錄 VI
    表目錄 IX
    圖目錄 X
    第一章、 前言 1
    1.1研究起源 1
    1.2研究目的 2
    第二章、文獻回顧 3
    2.1循環經濟 3
    2.2硫酸鹽還原菌(Sulfate Reducing Bacteria, SRB) 3
    2.2.1厭氧消化系統 4
    2.2.2影響SRB因子 4
    2.2.3 COD/SO42-影響 5
    2.2.4硫化物抑制 5
    2.3硫循環 6
    2.3.1硫平衡 8
    2.4硫的回收技術 9
    2.4.1以物理化學法去除硫化物之技術 9
    2.4.2以生物氧化法來去除硫化物 10
    2.5異丙醇 (IPA) 11
    2.5.1異丙醇作用與來源 12
    2.5.2異丙醇毒性與健康危害 12
    2.5.3異丙醇的降解途徑 13
    2.6二甲基亞碸(DMSO) 13
    2.6.1二甲基亞碸作用與來源 14
    2.6.2二甲基亞碸厭氧、好氧處理 14
    2.6.3二甲基亞碸的降解途徑 14
    第三章、材料與方法 16
    3.1實驗架構流程圖 16
    3.2批次試驗(BSP test) 17
    3.2.1 BSP test實驗流程及設備 18
    3.3實驗裝置 19
    3.3.1植種與進料基質和操作條件 21
    3.3.2採樣及分析方法 22
    3.4 計算方式說明 25
    3.5 各廠採樣位置及採樣方式 26
    第四章、結果與討論 27
    4.1 BSP test 27
    4.1.1第一次BSP test 27
    4.1.2第一次BSP test 試驗小結 31
    4.1.3第二次BSP test 31
    4.1.4第二次BSP test 試驗小結 36
    4.2後山厭氧生物濾床(蔗糖階段) 37
    4.2.1.厭氧濾床操作說明 37
    4.2.2進出流pH、ORP變化 37
    4.2.3.不同COD:SO42--S比例之去除率比較 38
    4.2.4.不同COD:SO42--S比例下氣相與液相硫化物比較 39
    4.2.5.質量平衡 42
    4.2.6後山厭氧生物濾床(蔗糖階段)小結 45
    4.3後山厭氧生物濾床(DMSO階段) 45
    4.3.1厭氧濾床操作說明 45
    4.3.2進出流pH、ORP變化 46
    4.3.3不同階段COD:SO42--S比例之去除率比較 47
    4.3.4後山厭氧生物濾床(DMSO階段)小結 54
    4.4污水處理廠及生質能中心評估硫問題 55
    4.4.1楠梓污水處理廠 55
    4.4.2福田水資源回收中心 57
    4.4.3外埔綠能生態園區 60
    4.4.4羅東地區水資源回收中心 60
    4.4.5迪化污水處理廠 63
    4.4.6評估五間實廠硫化氫是否具回收價值 65
    4.4.7污水處理廠及生質能中心評估硫問題小結 65
    第五章、結論與建議 66
    5.1結論 66
    5.2建議 67
    參考文獻 68
    附錄 73

    參考文獻
    1. Puertas, R. & Marti, L., 2021. "International ranking of climate change action: An analysis using the indicators from the Climate Change Performance Index," Renewable and Sustainable Energy Reviews, Elsevier, Volume 148, 111316
    2. Johnson, D. B., Hallberg, K. B., 2002. Pitfalls of passive mine water treatment. Rev.Environ. Sci. Biotechnol. 1, 335-343.
    3. Koster, I. W., Rinzema, A., De Vegt, A. L., Lettinga, G., 1986. “Sulfide inhibition of the methanogenic activity of granular sludge at various pH levels,” Water Res., Volume. 20, pp. 1561-1567.
    4. Hilton, B. L., Oleszkiewicz, J. A., 1988. “Sulphide-induced inhibition of anaerobic digestion,” Environment Engineering, Volume. 114, pp. 1377-1391.
    5. Mizuno, O., Li, Y. Y., and Noike, T., “The Behavior of Sulfate-Reducing Bacteria in Acidogenic Phase of Anaerobic Digestion,” Water Res., Volume.32, No.5, pp1626-1634, 1998.
    6. Parkin, G. F., Sneve, M. A., and Loos, H., 1991. “Anaerobic Filter Treatment of Sulfate-Containing Wastewaters,” Water Sci. Technol, Volume. 23, pp1283-1291.
    7. Boonman, H., Verstraten, P. and van der Weijde, A. H., 2023. Macroeconomic and Environmental Impacts of Circular Economy Innovation Policy. Sustainable Production and Consumption 35: 216-228.
    8. 經濟部國際合作處,循環經濟不僅是回收以需求導向創造新價值才是關鍵,取自 https://www.moea.gov.tw/mns/ietc/bulletin/Bulletin.aspx?kind=51&html=1&menu_id=33594&bull_id=9465
    9. Zhang, Z., Zhang, C., Yang, Y., Zhang, Z., Tang, Y., Su, P. and Lin, Z., 2022. A Review of Sulfate-Reducing Bacteria: Metabolism, Influencing Factors and Application in Wastewater Treatment. Journal of Cleaner Production, Volume 376, 134109.
    10. Zhang, L., Yang, P., Zhu, K., Ji, X., Ma, J., Mu, L., Ullah, F., Ouyang, W. and Li, A., 2022. Biorefinery-Oriented Full Utilization of Food Waste and Sewage Sludge by Integrating Anaerobic Digestion and Combustion: Synergistic Enhancement and Energy Evaluation. Journal of Cleaner Production, Volume 380, 134925.
    11. Parkin, G. F., & Owen, W. F., 1986. “Fundamentals of Anaerobic Digestion of Wastewater Sludges,” J. Wat. Poll. Control, Volume 112, pp. 867-920.
    12. Martins Costa, J., Piacentini Rodriguez, R. and Sancinetti, G.P., 2019. Anaerobic Batch Reactor Treating Acid Mine Drainage: Kinetic Stability on Sulfate and Cod Removal. Journal of Water Process Engineering 31: 100825.
    13. Menon, P. and Voordouw, G., 2018. Impact of Light Oil Toxicity on Sulfide Production by Acetate-Oxidizing, Sulfate-Reducing Bacteria. International Biodeterioration & Biodegradation 126: 208-215.
    14. Hu, Y., Jing, Z., Sudo, Y., Niu, Q., Du, J., Wu, J., Li, Y. Y., 2015. "Effect of influent COD/SO42− ratios on UASB treatment of a synthetic sulfate-containing wastewater", Chemosphere, Volume 130, pp.24-33.
    15. Liu, Y., Tay, J-H., 2004. “State of the art of biogranulation technology forwastewater treatment,” Biotechnology Advances, Volume 22, Issue 7, pp.533 -563
    16. Lopes, S.I.C., Sulistyawati, I., Capela, M.I. and Lens, P.N.L., 2007. Low pH (6, 5 and 4) Sulfate Reduction During the Acidification of Sucrose under Thermophilic (55°C) Conditions. Process Biochemistry 42: 580-591.
    17. Vidal, W., Carvalho, A., Mendez, R., Lema, J. M., 2000. “Influence of The Content in Fats and Proteins on The Anaerobic Biodegradability of Dairy Wastewaters,” Bioresource Technology, Volume 74, pp. 231 239.
    18. Jeong, TY., Chung, HK., Yeom, S.H. et al., 2009. Analysis of methane production inhibition for treatment of sewage sludge containing sulfate using an anaerobic continuous degradation process. Korean J. Chem. Eng. 26, 1319–1322.
    19. Chen, L., Fang, W., Liang, J., Nabi, M., Cai, Y., Wang, Q., Zhang, P. and Zhang, G., 2023. Biochar Application in Anaerobic Digestion: Performances, Mechanisms, Environmental Assessment and Circular Economy. Resources, Conservation and Recycling, Volume 188, 106720.
    20. Harada, H., Uemura, S., Monomoi, K., 1994. “Interactions between sulphate-reducing bacteria and methane-producing bacteria in UASB reactors fed with low strength wastes containing different levels of sulphate,” Water Res., pp. 355-367.
    21. 蘇姿月,1999,以厭氧固定化細胞進行含硫酸鹽廢水前處理之研究,國立屏東科技大學環境工程學系碩士論文。
    22. Brock, T. D., and Madigan, M.T., 1988a. Biology of Microorganisms,Fifth
    Edition, Prentice-Hall, pp576-578.
    23. Janssen, A. J. H., Lettinga, G., de Keizer, A., 1999. “Removal of hydrogen sulphide from wastewater and waste gases by biological conversion to elemental sulphur: Colloidal and interfacial aspects of biologically produced sulphur particles”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 151, Issues 1-2, pp. 389-397.
    24. Kang, J. H., Yoon, Y., Song, J., 2020. “Effects of pH on the simultaneous removal of hydrogen sulfide and ammonia in a combined absorption and electro-oxidation system”, Journal of Hazardous Materials, Volume 382, 121011.
    25. Gostelow, P., Parsons, S. A., Stuetz, R. M., 2001. “Odour measurements for sewage treatment works”, Water Res., Volume 35, Issue 3, pp. 579-597.
    26. Henshaw, P. F., Bewtra, J. K., and Biswas, N., 1998. “Hydrogen Sulphide Conversion to Elemental Sulphur in a Suspended-Growth Continuous Stirred Tank Reactor Using Chlorobium Limicola,” Wat.Res., Vol. 32, No.6, pp1769-1778.
    27. Choi, E, and Rim, J. M., 1991. “Competition and inhibition of sulfate reducers and methane producers in anaerobic treatment, ” Wat. Sci. Technol., Vol. 23, pp1259-1264.
    28. Janssen, A. J. H., de Keizer, A., and Lettinga, G.,1994. ”Colloidal Properties of a Microbiologically Produced Sulphur Suspension in Comparison to a LaMer Sulphor sol, ” Colloids Surfaces B: Biointerfaces 3, pp111-117.
    29. 工業技術研究院中分院,沼氣發電與再利用資訊網,取自https://www.biogas.com.tw/technology/technology_more?id=c474d11c8cc141a18d663d56a306b6cc
    30. 行政院環境保護署毒物及化學物質局網頁,取自: https://topic.epa.gov.tw/chemiknowledgemap/sp-chemical-5-20-5.html?Chn=&Eng=&Cas=
    31. Lin, S.H. and Wang, C.S., 2004. Recovery of Isopropyl Alcohol from Waste Solvent of a Semiconductor Plant. Journal of Hazardous Materials 106: 161-168.
    32. 魏嘉儀,2021,透過廢液 COD 還原硫酸鹽以回收硫化鈉之可行性研究,國立屏東科技大學環境工程學系碩士論文。
    33. Vermorel, N., San-Valero, P., Izquierdo, M., Gabaldón, C., Penya-roja , J.M., 2017, “Anaerobic degradation of 2-propanol: Laboratory and pilot-scale studies” , Chemical Engineering Science , Volume 172, pp.42-51.
    34. 勞動部職業安全衛生署,2020,職業暴露甲醇、丁醇、異丙醇、環己醇、甲基環己醇引起之中毒認定參考指引,取自https://tmsc.osha.gov.tw/upfiles/DF6/4%E8%81%B7%E6%A5%AD%E6%9A%B4%E9%9C%B2%E7%94%B2%E9%86%87-%E4%B8%81%E9%86%87-%E7%95%B0%E4%B8%99%E9%86%87-%E7%92%B0%E5%B7%B1%E9%86%87-%E7%94%B2%E5%9F%BA%E7%92%B0%E5%B7%B1%E9%86%87%E5%BC%95%E8%B5%B7%E4%B9%8B%E4%B8%AD%E6%AF%92%E8%AA%8D%E5%AE%9A%E5%8F%83%E8%80%83%E6%8C%87%E5%BC%95.pdf
    35. 鄭凱義,2005,以厭氧生物處理法去除廢水中異丙醇及丙酮之研究,台灣大學環境工程學系碩士論文。
    36. 國家衛生研究院國家環境毒物研究中心,毒物信息CompTox 化學品儀表板(美國 EPA),取自:
    https://comptox.epa.gov/dashboard/chemical/details/DTXSID2021735
    37. Cheng, H.-H., Liu, C.-B., Lei, Y.-Y., Chiu, Y.-C., Mangalindan, J., Wu, C.-H., Wu, Y.-J. and Whang, L.-M., 2019. Biological Treatment of Dmso-Containing Wastewater from Semiconductor Industry under Aerobic and Methanogenic Conditions. Chemosphere 236: 124291.
    38. 李展能,2008,TFT-LCD 有機廢水在好氧、缺氧以及無氧環境下之分解機制的研究,國立成功大學環境工程學系碩士論文。
    39. 林宏霖,2005,探討生物分解光電 產業製程廢水之反應動力特性研究,國立成功大學碩士論文。
    40. De Bont, J. A. M., Van Dijiken, J. P., Harder, W., 1981.“Dimethyl sulfoxide and dimethyl sulfide as a carbon, sulfur and energy source for growth of Hyphomicrobium S”, Journal of general microbiology, Volume. 127, pp. 315-323
    41. Owen W. F., Stuckey D. C., Healy Jr J. B., Young L. Y. and McCarty P. L., 1979, “Bioassay for monitoring biochemical methane potential and anaerobic toxicity,” Water Res., Vol. 13(6), pp. 485-492.
    42. 鄭華安,郭崇文,陳郁良,林永壽,溫清光,2008,南科台南園區光電產業廢水特性研究暨管制策略研訂,行政院國家科學委員會自行研究計畫,第14-15頁。
    43. Lopes, S.I.C., Capela, M.I. and Lens, P.N.L., 2010. Sulfate Reduction During the Acidification of Sucrose at pH 5 under Thermophilic (55°C) Conditions. Ii: Effect of Sulfide and COD/SO42- Ratio. Bioresource Technology 101: 4278-4284.
    44. 黃思蓴,張慧玫,王復暐,劉傑瑋,何欣怡,2011,以氣舉式生物反應器處理光電業含二甲基亞碸(DMSO)廢水之可行性評估,行政院國家科學委員會專題研究計畫,第19-20頁。
    45. 楊佳紘,2005,生物沉澱程序中重要金屬對硫酸鹽還原效率的影響,國立交通大學環境工程研究所碩士論文。
    46. 陳家福,李展能,劉保文,黃良銘,利用生物降解 TFT-LCD 製程有機廢水之研究,2007 廢水處理技術研討會,2007年11月23-24日,國立高雄大學,高雄。
    47. 吳怡靜,2009,含硫異味物質之化學及生物氧化,國立中山大學環境工程研究所碩士論文。

    下載圖示
    QR CODE