簡易檢索 / 詳目顯示

研究生: 黃逸銘
I-Ming Huang
論文名稱: 樹葡萄(Plinia cauliflora)果皮血管收縮素轉化酵素抑制能力及相關成分之探討
The Angiotensin converting enzyme inhibition ability and related component of jabuticaba peel
指導教授: 蔡碧仁
Pi Jen Tsai
學位類別: 碩士
Master
系所名稱: 農學院 - 食品科學系所
Department of Food Science
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 126
中文關鍵詞: 樹葡萄水解微膠囊技術田口法血管收縮素轉化酵素
外文關鍵詞: Jabuticaba (Plinia cauliflora), Microencapsulation, Hydrolysis, Taguchi method, Angiotensin-converting enzyme
DOI URL: http://doi.org/10.6346/NPUST202300044
相關次數: 點閱:69下載:72
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 高血壓為現代人常見的健康問題,若長期處於此狀態下,容易引起併發症,提高罹患腦部及心血管疾病的風險。而長期服用合成藥物又容易引起副作用,因此開發天然保健食品以預防高血壓是目前的趨勢之一。樹葡萄(Plinia cauliflora)廣泛分布於巴西等熱帶雨林地區,果實可直接鮮食,也可加工製成果醬、果汁等。但其果皮風味不佳,因此多會將其去除,而產生大量的廢棄物。文獻指出,動物試驗中樹葡萄具有降低血壓的功能,且生物活性物質多位於果皮及種子。因此本研究以樹葡萄果皮為原料,探討其抑制血管收縮素轉化酵素(angiotensin-converting enzyme)之能力。
    研究中利用最佳水解條件,提高ACE抑制能力及生物活性成分含量,並探討不同產地(南投、台南、屏東)的樹葡萄果皮對ACE抑制能力之影響,最後運用微膠囊技術將水解物製成粉末,以開發成保健品。
    研究結果顯示,樹葡萄皮在水解後萃取得到的總酚含量為約為4%~6%,相較於未水解的萃取物,增加了約2倍,水解後ACE抑制能力也顯著提高。經由HPLC分析得知,樹葡萄皮樣品中含量最多的酚類化合物為表兒茶素,次多的為鞣花酸,在水解後也顯著增加,且與ACE抑制能力顯著相關。產地以台南及屏東原料可得到較高生物活性成分及類超氧歧化酶(superoxide dismutase-like)活性。進一步由田口法(Taguchi method)找出的微膠囊最適配方,包埋率可高達95%。綜上所述,樹葡萄皮水解物具有開發作為保健產品原料的潛力,並可經微膠囊技術增加其商業利用價值。

    Hypertension is a common health problem in modern people. Long-term high blood pressure can easily lead to complications and increase the risk of brain and cardiovascular diseases. And long-term use of synthetic drugs is easy to cause side effects, so the development of natural health food to prevent high blood pressure is one of the current trends. Jabuticaba (Plinia cauliflora) is widely distributed in tropical rainforest regions such as Brazil. The fruit can be eaten fresh or processed into jam, juice, etc. However, the peel has a poor flavor, so it is often removed, resulting in a large amount of waste. The literature points out that jabuticaba have the function of lowering blood pressure in animal experiments, and the biologically active substances are mostly located in the peel and seeds. Therefore, this study used jabuticaba peel as material to investigate its ability to inhibit angiotensin-converting enzyme (ACE).
    In the study, the optimal hydrolysis conditions were used to improve the ACE inhibitory ability and the content of bioactive components, and the effects of jabuticaba peels from different origins (Nantou, Tainan, Pingtung) on the ACE inhibitory ability were discussed. At last, the hydrolyzate is made into powder by microcapsultion to develop a health product.
    The results showed that the total phenolic content of the jabuticaba peel extract after hydrolysis was about 4% to 6%, which was about 2 times that of the unhydrolyzed extract. The ACE inhibitory ability after hydrolysis was also significantly improved. Further HPLC analysis revealed that the most abundant phenolic compound in the jabuticaba peel was epicatechin, followed by ellagic acid. They increases significantly after hydrolysis, respectively, and significantly correlated with ACE inhibitory ability. For the material come from different origins, the higher bioactive components and superoxide dismutase-like (SOD-like) activity was obtained for materials from Tainan and Pingtung. The most suitable method for microcapsules was further found by Taguchi method, and the encapsulation rate can be as high as 95%. To sum up, the hydrolyzate of jabuticaba peel exhibits the potential to be developed as a material for health products, and its commercial value can be increased by microencapsulation technology.

    摘要 I
    Abstract II
    謝誌 IV
    目錄 V
    表目錄 VIII
    圖目錄 IX
    第一章 前言 1
    第二章 文獻回顧 2
    2.1 樹葡萄植物及果實 2
    2.1.1 樹葡萄皮 3
    2.2 多酚化合物 5
    2.2.1 酚酸 5
    2.2.2 類黃酮 8
    2.2.3 花青素 9
    2.3 超氧歧化酶 15
    2.4 超氧歧化酶類似物 17
    2.5 胺基酸 17
    2.5.1 功能性胺基酸 18
    2.6 高血壓 22
    2.6.1 原發性高血壓 22
    2.6.2 續發性高血壓 23
    2.6.3 血壓調節機制 23
    2.6.4 高血壓之治療藥物 24
    2.7 水解 31
    2.7.1 非酵素性水解 31
    2.7.2 酵素性水解 31
    2.7.3 常見水解酵素 32
    2.8 微膠囊 35
    2.8.1 壁材特性之影響 35
    第三章 材料與方法 37
    3.1 實驗材料 37
    3.2 實驗藥品 37
    3.3 實驗儀器 38
    3.4 實驗設計 39
    3.5 實驗方法 43
    3.5.1 抗氧化能力分析 43
    3.5.2 抗氧化成分分析 45
    3.5.3 高效能液相層析儀分析胺基酸化合物 49
    3.5.4 抑制血管收縮素轉化酵素能力 52
    3.5.5 田口法 (Taguchi method) 53
    3.5.6 微膠囊化(Microencapsulation) 53
    3.5.7 加速儲藏試驗 (Accelerated storage test) 55
    3.5.8 統計分析 55
    第四章 結果與討論 56
    4.1 樹葡萄果皮之酵素水解條件 56
    4.1.1 最適萃取樹葡萄果皮之比例 56
    4.1.2 最適酵素濃度 60
    4.1.3 最適酵素水解時間 65
    4.1.4 最適酵素水解溫度 69
    4.2 不同來源樹葡萄果皮之比較 73
    4.2.1 抗氧化成分分析 73
    4.2.2 抗氧化能力分析 81
    4.2.3 抑制酵素能力分析 86
    4.2.4 不同來源樹葡萄皮胺基酸定性及定量 88
    4.2.5 相關性分析 92
    4.3 微膠囊化 101
    4.4 微膠囊化樣品儲藏試驗 104
    4.4.1 微膠囊化樣品加速試驗 104
    4.4.2 微膠囊化樣品長期儲藏試驗 104
    第五章 結論 109
    第六章 參考文獻 110
    作者簡介 126

    蔡碧仁、洪榮賢、林子青、陳怡筱、陳和賢、王志源、林子清. 2004. 幹
    式桑椹蜜餞之製造與貯藏. 臺灣農業化學與食品科學, 42(2), 140–
    146.
    國民健康署. 2022, May 17. 血壓控管就靠「722」 ~定期量測沒煩惱 [文
    字]. 國民健康署; 國民健康署. https://www.mohw.gov.tw/cp-16-
    69636-1.html
    第 2 章:蛋白質結構——化學. (n.d.). Retrieved August 7, 2022, from
    https://wou.edu/chemistry/courses/online-chemistry-textbooks/ch450-
    and-ch451-biochemistry-defining-life-at-the-molecular-level/chapter-2-
    protein-structure/
    Abrashev, R., Feller, G., Kostadinova, N., Krumova, E., Alexieva, Z.,
    Gerginova, M., Spasova, B., Miteva-Staleva, J., Vassilev, S., & Angelova,
    M. 2016. Production, purification, and characterization of a novel cold-
    active superoxide dismutase from the Antarctic strain Aspergillus glaucus
    363. Fungal Biology, 120(5), 679–689.
    Akhavan Mahdavi, S., Jafari, S. M., Assadpoor, E., & Dehnad, D. 2016.
    Microencapsulation optimization of natural anthocyanins with
    maltodextrin, gum Arabic and gelatin. International Journal of Biological
    Macromolecules, 85, 379–385.
    Alezandro, M. R., Dubé, P., Desjardins, Y., Lajolo, F. M., & Genovese, M. I.
    2013. Comparative study of chemical and phenolic compositions of two
    species of jaboticaba: Myrciaria jaboticaba (Vell.) Berg and Myrciaria
    cauliflora (Mart.) O. Berg. Food Research International, 54(1), 468–477.
    Arenas-Jal, M., Suñé-Negre, J. M., & García-Montoya, E. 2020. An overview
    of microencapsulation in the food industry: Opportunities, challenges, and
    innovations. European Food Research and Technology, 246(7), 1371–
    1382.
    Ariyanto, H., Malik, A. A., Widianti, W., & Oktavia, W. 2020. Prevalence and
    correlation of knowledge levels with the physical activity of
    hypertension patients. Genius Journal, 1(2), Article 2.
    Bafana, A., Dutt, S., Kumar, A., Kumar, S., & Ahuja, P. S. 2011. The basic and
    applied aspects of superoxide dismutase. Journal of Molecular Catalysis
    B: Enzymatic, 68(2), 129–138.
    Bai, T., Li, J., Murtaza, A., Iqbal, A., Zhu, L., Zhang, J., Zhang, B., Xu, X., Pan,
    S., & Hu, W. 2022. Scavenging of ROS After eugenol treatment as
    mechanism of slowing down membrane lipid metabolism to maintain
    the surface color of fresh-cut yam. Food and Bioprocess Technology.
    Benvenutti, L., Zielinski, A. A. F., & Ferreira, S. R. S. 2021. Jaboticaba
    (Myrtaceae cauliflora) fruit and its by-products: Alternative sources for
    new foods and functional components. Trends in Food Science &
    Technology, 112, 118–136.
    Bhaswant, M., Shafie, S. R., Mathai, M. L., Mouatt, P., & Brown, L. 2017.
    Anthocyanins in chokeberry and purple maize attenuate diet-induced
    metabolic syndrome in rats. Nutrition, 41, 24–31.
    Brettonnet, A., Hewavitarana, A., DeJong, S., & Lanari, M. C. 2010. Phenolic
    acids composition and antioxidant activity of canola extracts in cooked
    beef, chicken and pork. Food Chemistry, 121(4), 927–933.
    Carboni Martins, C., Rodrigues, R. C., Domeneghini Mercali, G., & Rodrigues,
    E. 2022. New insights into non-extractable phenolic compounds analysis.
    Food Research International, 157, 111487.
    Castañeda-Ovando, A., Pacheco-Hernández, Ma. de L., Páez-Hernández, Ma.
    E., Rodríguez, J. A., & Galán-Vidal, C. A. 2009. Chemical studies of
    anthocyanins: A review. Food Chemistry, 113(4), 859–871.
    Cavalcanti, R. N., Santos, D. T., & Meireles, M. A. A. 2011. Non-thermal
    stabilization mechanisms of anthocyanins in model and food systems—
    An overview. Food Research International, 44(2), 499–509.
    Chen, H., Zhang, M., Qu, Z., & Xie, B. 2008. Antioxidant activities of different
    fractions of polysaccharide conjugates from green tea (Camellia sinensis).
    Food Chemistry, 106(2), 559–563.
    Chen, L., Wang, L., Shu, G., Yuan, J., Zhang, J., Qin, S., & Li, J. 2023.
    Enhanced antihypertensive potential of fermented pomegranate juice: The
    contribution of phenolic compounds biotransformation and the resultant
    angiotensin-I-converting enzyme inhibition mechanism. Food Chemistry,
    404, 134745.
    Chen, Y., & Xue, Y. 2018. Purification, chemical characterization and
    antioxidant activities of a novel polysaccharide from Auricularia
    polytricha. International Journal of Biological Macromolecules, 120,
    1087–1092.
    Chiong, J. R., Aronow, W. S., Khan, I. A., Nair, C. K., Vijayaraghavan, K., Dart,
    R. A., Behrenbeck, T. R., & Geraci, S. A. 2008. Secondary hypertension:
    Current diagnosis and treatment. International Journal of Cardiology,
    124(1), 6–21.
    Cortez, R., Luna-Vital, D. A., Margulis, D., & Gonzalez de Mejia, E. 2017.
    Natural pigments: Stabilization methods of anthocyanins for food
    applications. Comprehensive Reviews in Food Science and Food Safety,
    16(1), 180–198.
    Crozier, A., Jaganath, I. B., & Clifford, M. N. 2009. Dietary phenolics:
    Chemistry, bioavailability and effects on health. Natural Product Reports,
    26(8), 1001–1043.
    de Matos, F. M., de Lacerda, J. T. J. G., Zanetti, G., & de Castro, R. J. S. 2022.
    Production of black cricket protein hydrolysates with α-amylase, α-
    glucosidase and angiotensin I-converting enzyme inhibitory activities
    using a mixture of proteases. Biocatalysis and Agricultural Biotechnology,
    39, 102276.
    de Pascual-Teresa, S., & Sanchez-Ballesta, M. T. 2008. Anthocyanins: From
    plant to health. Phytochemistry Reviews, 7(2), 281–299.
    de Souza, T. S. P., & Kawaguti, H. Y. 2021. Cellulases, hemicellulases, and
    pectinases: applications in the food and beverage industry. Food and
    Bioprocess Technology, 14(8), 1446–1477.
    Delgado, P. A., Vignoli, J. A., Siika-aho, M., & Franco, T. T. 2008. Sediments
    in coffee extracts: Composition and control by enzymatic hydrolysis.
    Food Chemistry, 110(1), 168–176.
    Fidelis, M., Santos, J. S., Escher, G. B., Rocha, R. S., Cruz, A. G., Cruz, T. M.,
    Marques, M. B., Nunes, J. B., do Carmo, M. A. V., de Almeida, L. A.,
    Kaneshima, T., Azevedo, L., & Granato, D. 2021. Polyphenols of
    jabuticaba [Myrciaria jaboticaba (Vell.) O.Berg] seeds incorporated in a
    yogurt model exert antioxidant activity and modulate gut microbiota of
    1,2-dimethylhydrazine-induced colon cancer in rats. Food Chemistry, 334,
    127565.
    Filpa, V., Moro, E., Protasoni, M., Crema, F., Frigo, G., & Giaroni, C. 2016.
    Role of glutamatergic neurotransmission in the enteric nervous system and
    brain-gut axis in health and disease. Neuropharmacology, 111, 14–33.
    Gao, Q., Li, Y., Li, Y., Liang, Y., & Zhang, Z. 2022. Profile of anthocyanins in
    purple vegetables commonly consumed in China and their relationship
    with antioxidant abilities. Journal of Food Measurement and
    Characterization, 16(2), 1659–1673.
    Garg, G., Singh, A., Kaur, A., Singh, R., Kaur, J., & Mahajan, R. 2016.
    Microbial pectinases: An ecofriendly tool of nature for industries. 3
    Biotech, 6(1), 47.
    Gasparotto Jr. Arquimedes., de Souza, P., & Lívero, F. A. dos R. 2019. Plinia
    cauliflora (Mart.) Kausel: A comprehensive ethnopharmacological review
    of a genuinely Brazilian species. Journal of Ethnopharmacology, 245,
    112169.
    Gligor, O., Mocan, A., Moldovan, C., Locatelli, M., Crișan, G., & Ferreira, I.
    C. F. R. 2019. Enzyme-assisted extractions of polyphenols – A
    comprehensive review. Trends in Food Science & Technology, 88, 302–
    315.
    Gummadi, S. N., & Panda, T. 2003. Purification and biochemical properties of
    microbial pectinases—A review. Process Biochemistry, 38(7), 987–996.
    Guo, C., Yang, J., Wei, J., Li, Y., Xu, J., & Jiang, Y. 2003. Antioxidant activities
    of peel, pulp and seed fractions of common fruits as determined by FRAP
    assay. Nutrition Research, 23(12), 1719–1726.
    Gurak, P. D., De Bona, G. S., Tessaro, I. C., & Marczak, L. D. F. 2014.
    Jaboticaba pomace powder obtained as a co-product of juice extraction:
    A comparative study of powder obtained from peel and whole fruit.
    Food Research International, 62, 786–792.
    Haida, Z., & Hakiman, M. 2019. A comprehensive review on the determination
    of enzymatic assay and nonenzymatic antioxidant activities. Food Science
    & Nutrition, 7(5), 1555–1563.
    Hammed, A. M., Jaswir, I., Amid, A., Alam, Z., Asiyanbi-H, T. T., & Ramli, N.
    2013. Enzymatic hydrolysis of plants and algae for extraction of
    bioactive compounds. Food Reviews International, 29(4), 352–370.
    Handique, J. G., & Baruah, J. B. 2002. Polyphenolic compounds: An overview.
    Reactive and Functional Polymers, 52(3), 163–188.
    Hart, E. C., & Charkoudian, N. 2011. Sympathetic neural mechanisms in
    human blood pressure regulation. Current Hypertension Reports, 13(3),
    237–243.
    Hartati, R., Nadifan, H. I., & Fidrianny, I. 2020. Crystal guava (Psidium
    guajava L. “Crystal”): Evaluation of in vitro antioxidant capacities and
    phytochemical content. The Scientific World Journal, 2020, e9413727.
    Heck, R. T., Ferreira, D. F., Fagundes, M. B., Santos, B. A. D., Cichoski, A. J.,
    Saldaña, E., Lorenzo, J. M., de Menezes, C. R., Wagner, R., Barin, J. S.,
    & Campagnol, P. C. B. 2020. Jabuticaba peel extract obtained by
    microwave hydrodiffusion and gravity extraction: A green strategy to
    improve the oxidative and sensory stability of beef burgers produced with
    healthier oils. Meat Science, 170, 108230.
    Hidalgo, M., Martin-Santamaria, S., Recio, I., Sanchez-Moreno, C., de
    Pascual-Teresa, B., Rimbach, G., & de Pascual-Teresa, S. 2012. Potential
    anti-inflammatory, anti-adhesive, anti/estrogenic, and angiotensin-
    converting enzyme inhibitory activities of anthocyanins and their gut
    metabolites. Genes & Nutrition, 7(2), 295–306.
    Holland, C., Ryden, P., Edwards, C. H., & Grundy, M. M.-L. 2020. Plant cell
    walls: Impact on nutrient bioaccessibility and digestibility. Foods, 9(2),
    Article 2.
    Horanni, R., & Engelhardt, U. H. 2013. Determination of amino acids in white,
    green, black, oolong, pu-erh teas and tea products. Journal of Food
    Composition and Analysis, 31(1), 94–100.
    Hou, Y., & Wu, G. 2017. Nutritionally nonessential amino acids: A misnomer
    in nutritional sciences. Advances in Nutrition, 8(1), 137–139.
    Igwe, E. O., Charlton, K. E., Roodenrys, S., Kent, K., Fanning, K., & Netzel,
    M. E. 2017. Anthocyanin-rich plum juice reduces ambulatory blood
    pressure but not acute cognitive function in younger and older adults:
    A pilot crossover dose-timing study. Nutrition Research, 47, 28–43.
    Jaiswal, R., Kiprotich, J., & Kuhnert, N. 2011. Determination of the
    hydroxycinnamate profile of 12 members of the Asteraceae family.
    Phytochemistry, 72(8), 781–790.
    Je, J.-Y., Park, P.-J., Kim, E.-K., & Ahn, C.-B. 2009. Antioxidant and
    angiotensin I converting enzyme inhibitory activity of Bambusae caulis in
    Liquamen. Food Chemistry, 113(4), 932–935.
    Jeong, H.-S., Kim, H.-Y., Ahn, S. H., Oh, S. C., Yang, I., & Choi, I.-G. 2014.
    Optimization of enzymatic hydrolysis conditions for extraction of pectin
    from rapeseed cake (Brassica napus L.) using commercial enzymes. Food
    Chemistry, 157, 332–338.
    Jiang, G.-L., & Zhu, M.-J. 2019. Preparation of astaxanthin-encapsulated
    complex with zein and oligochitosan and its application in food processing.
    LWT - Food Science and Technology, 106, 179–185.
    Johns, P. W., & Hertzler, S. R. 2021. Glutamine and asparagine in nutritional
    products. Food Analytical Methods, 14(7), 1498–1509.
    Kähkönen, M. P., & Heinonen, M. 2003. Antioxidant activity of anthocyanins
    and their aglycons. Journal of Agricultural and Food Chemistry, 51(3),
    628–633.
    Kazan, R. M., Seddik, H. A., Marstani, Z. M., Elsutohy, M. M., & Yasri, N. G.
    2019. Determination of amino acids content in tea species using liquid
    chromatography via pre-column fluorescence derivatization.
    Microchemical Journal, 150, 104103.
    Kessy, H. N. E., Wang, K., Zhao, L., Zhou, M., & Hu, Z. 2018. Enrichment and
    biotransformation of phenolic compounds from litchi pericarps with
    angiotensin I-converting enzyme (ACE) inhibition activity. LWT - Food
    Science and Technology, 87, 301–309.
    Kong, J.-M., Chia, L.-S., Goh, N.-K., Chia, T.-F., & Brouillard, R. 2003.
    Analysis and biological activities of anthocyanins. Phytochemistry, 64(5),
    923–933.
    Kumar, B. R. 2017. Application of HPLC and ESI-MS techniques in the
    analysis of phenolic acids and flavonoids from green leafy vegetables
    (GLVs). Journal of Pharmaceutical Analysis, 7(6), 349–364.
    Kumar, B. R. 2017. Application of HPLC and ESI-MS techniques in the
    analysis of phenolic acids and flavonoids from green leafy vegetables
    (GLVs). Journal of Pharmaceutical Analysis, 7(6), 349–364.
    Kumar, N., & Goel, N. 2019. Phenolic acids: Natural versatile molecules with
    promising therapeutic applications. Biotechnology Reports, 24, e00370.
    Kumar, S., & Pandey, A. K. 2013. Chemistry and biological activities of
    flavonoids: An overview. The Scientific World Journal, 2013, e162750.
    Kumari, R., & Gupta, M. 2022. Elucidating the techno-functional,
    morphological and phenolic properties of hull less barley and buckwheat
    incorporated pasta. Food Chemistry Advances, 100055.
    Lai, J.-T., Wang, W.-C., Liao, C.-M., Huang, T.-C., & Liao, C.-C. 2009.
    Cultivation of Aspergillus phoenicis with high superoxide dismutase-like
    activity. Journal of the Taiwan Institute of Chemical Engineers, 40(5),
    485–490.
    Lee, D.-Y., & Kim, E.-H. 2019. Therapeutic effects of amino acids in liver
    diseases: Current studies and future perspectives. Journal of Cancer
    Prevention, 24(2), 72–78.
    Leite-Legatti, A. V., Batista, Â. G., Dragano, N. R. V., Marques, A. C., Malta,
    L. G., Riccio, M. F., Eberlin, M. N., Machado, A. R. T., de Carvalho-Silva,
    L. B., Ruiz, A. L. T. G., de Carvalho, J. E., Pastore, G. M., & Maróstica,
    M. R. 2012. Jaboticaba peel: Antioxidant compounds, antiproliferative
    and antimutagenic activities. Food Research International, 49(1), 596–
    603.
    Leopoldini, M., Russo, N., & Toscano, M. 2011. The molecular basis of
    working mechanism of natural polyphenolic antioxidants. Food
    Chemistry, 125(2), 288–306.
    Li, G.-H., Le, G.-W., Shi, Y.-H., & Shrestha, S. 2004. Angiotensin I–converting
    enzyme inhibitory peptides derived from food proteins and their
    physiological and pharmacological effects. Nutrition Research, 24(7),
    469–486.
    Lin, Y., Tang, D., Liu, X., Cheng, J., Wang, X., Guo, D., Zou, J., & Yang, H.
    2022. Phenolic profile and antioxidant activity of longan pulp of different
    cultivars from South China. LWT - Food Science and Technology, 165,
    113698.
    Liu, Y., Qi, Y., Chen, X., He, H., Liu, Z., Zhang, Z., Ren, Y., & Ren, X. 2019.
    Phenolic compounds and antioxidant activity in red- and in green-fleshed
    kiwifruits. Food Research International, 116, 291–301.
    Lohmeier, T. E. 2001. The sympathetic nervous system and long-term blood
    pressure regulation. American Journal of Hypertension, 14(S3), 147S-
    154S.
    Lu, S.-Y., Chu, Y.-L., Sridhar, K., & Tsai, P.-J. 2021. Effect of ultrasound, high-
    pressure processing, and enzymatic hydrolysis on carbohydrate
    hydrolyzing enzymes and antioxidant activity of lemon (Citrus limon)
    flavedo. LWT - Food Science and Technology, 138, 110511.
    Lütke-Eversloh, T., Santos, C. N. S., & Stephanopoulos, G. 2007. Perspectives
    of biotechnological production of l-tyrosine and its applications. Applied
    Microbiology and Biotechnology, 77(4), 751–762.
    Maleki, S. J., Crespo, J. F., & Cabanillas, B. 2019. Anti-inflammatory effects
    of flavonoids. Food Chemistry, 299, 125124.
    Mark, R., Lyu, X., Lee, J. J. L., Parra-Saldívar, R., & Chen, W. N. 2019.
    Sustainable production of natural phenolics for functional food
    applications. Journal of Functional Foods, 57, 233–254.
    Menezes, J. C. J. M. D. S., Orlikova, B., Morceau, F., & Diederich, M. 2016.
    Natural and synthetic flavonoids: Structure–activity relationship and
    chemotherapeutic potential for the treatment of leukemia. Critical
    Reviews in Food Science and Nutrition, 56, S4–S28.
    Mladěnka, P., Zatloukalová, L., Filipský, T., & Hrdina, R. 2010. Cardiovascular
    effects of flavonoids are not caused only by direct antioxidant activity.
    Free Radical Biology and Medicine, 49(6), 963–975.
    Montenegro-Landívar, M. F., Tapia-Quirós, P., Vecino, X., Reig, M.,
    Valderrama, C., Granados, M., Cortina, J. L., & Saurina, J. 2021.
    Polyphenols and their potential role to fight viral diseases: An overview.
    Science of The Total Environment, 801, 149719.
    Murray, B. A., Walsh, D. J., & FitzGerald, R. J. 2004. Modification of the
    furanacryloyl-l-phenylalanylglycylglycine assay for determination of
    angiotensin-I-converting enzyme inhibitory activity. Journal of
    Biochemical and Biophysical Methods, 59(2), 127–137.
    Musa, K. H., Abdullah, A., & Al-Haiqi, A. 2016. Determination of DPPH free
    radical scavenging activity: Application of artificial neural networks.
    Food Chemistry, 194, 705–711.
    Nadar, S. S., Rao, P., & Rathod, V. K. 2018. Enzyme assisted extraction of
    biomolecules as an approach to novel extraction technology: A review.
    Food Research International, 108, 309–330.
    Naghavi, R., Abdoli, M. A., Karbassi, A., & Adl, M. 2022. Determining the
    appropriate mixing ratio in a multi-substrate anaerobic digestion of
    organic solid wastes employing Taguchi method. Journal of
    Environmental Health Science and Engineering, 20(1), 545–554.
    Nicosia, N., Kwiecień, I., Mazurek, J., Mika, K., Bednarski, M., Miceli, N.,
    Ragusa, S., Ekiert, H., Maes, M., & Kotańska, M. 2022. Hydroalcoholic
    leaf extract of Isatis tinctoria L. via antioxidative and anti-inflammatory
    effects reduces stress-induced behavioral and cellular disorders in
    mice. Oxidative Medicine and Cellular Longevity, 2022, e3567879.
    Olszowy, M. 2019. What is responsible for antioxidant properties of
    polyphenolic compounds from plants? Plant Physiology and Biochemistry,
    144, 135–143.
    Oparil, S., Zaman, M. A., & Calhoun, D. A. 2003. Pathogenesis of hypertension.
    Annals of Internal Medicine, 139(9), 761–776.
    Percival Zhang, Y.-H., Himmel, M. E., & Mielenz, J. R. 2006. Outlook for
    cellulase improvement: Screening and selection strategies. Biotechnology
    Advances, 24(5), 452–481.
    Pimenta Inada, K. O., Nunes, S., Martínez-Blázquez, J. A., Tomás-Barberán, F.
    A., Perrone, D., & Monteiro, M. 2020. Effect of high hydrostatic pressure
    and drying methods on phenolic compounds profile of jabuticaba
    (Myrciaria jaboticaba) peel and seed. Food Chemistry, 309, 125794.
    Plangar, A. F., Anaeigoudari, A., KhajaviRad, A., & Shafei, M. N. 2019.
    Beneficial cardiovascular effects of hydroalcoholic extract from crocus
    sativus in hypertension induced by angiotensin II. Journal of
    Pharmacopuncture, 22(2), 95–101.
    Pundir, R., Chary, G. H. V. C., & Dastidar, M. G. 2018. Application of Taguchi
    method for optimizing the process parameters for the removal of copper
    and nickel by growing Aspergillus sp. Water Resources and Industry, 20,
    83–92.
    Puri, M., Sharma, D., & Barrow, C. J. 2012. Enzyme-assisted extraction of
    bioactives from plants. Trends in Biotechnology, 30(1), 37–44.
    Randhir, R., Lin, Y.-T., & Shetty, K. 2004. Stimulation of phenolics, antioxidant
    and antimicrobial activities in dark germinated mung bean sprouts in
    response to peptide and phytochemical elicitors. Process Biochemistry,
    39(5), 637–646.
    Rashmi, H. B., & Negi, P. S. 2020. Phenolic acids from vegetables: A review
    on processing stability and health benefits. Food Research International,
    136, 109298.
    Rodrigues, L. A., Wellington, M. O., González-Vega, J. C., Htoo, J. K., Van
    Kessel, A. G., & Columbus, D. A. 2021. Functional amino acid
    supplementation, regardless of dietary protein content, improves growth
    performance and immune status of weaned pigs challenged with
    Salmonella Typhimurium. Journal of Animal Science, 99(2).
    Sabu, M. C., & Kuttan, R. 2002. Anti-diabetic activity of medicinal plants and
    its relationship with their antioxidant property. Journal of
    Ethnopharmacology, 81(2), 155–160.
    Sandoval-Gallardo, J. M., Osuna-Ruiz, I., Martínez-Montaño, E., Hernández,
    C., Hurtado-Oliva, M. Á., Valdez-Ortiz, Á., Rios-Herrera, G. D., Salazar-
    Leyva, J. A., & Ramírez-Pérez, J. S. 2020. Influence of enzymatic
    hydrolysis conditions on biochemical and antioxidant properties of pacific
    thread herring (Ophistonema libertate) hydrolysates. CyTA - Journal of
    Food, 18(1), 392–400.
    Santos, P. D. de F., Rubio, F. T. V., da Silva, M. P., Pinho, L. S., & Favaro-
    Trindade, C. S. 2021. Microencapsulation of carotenoid-rich materials: A
    review. Food Research International, 147, 110571.
    Schulz, M., Seraglio, S. K. T., Della Betta, F., Nehring, P., Valese, A. C., Daguer,
    H., Gonzaga, L. V., Costa, A. C. O., & Fett, R. 2020. Determination of
    phenolic compounds in three edible ripening stages of yellow guava
    (Psidium cattleianum Sabine) after acidic hydrolysis by LC-MS/MS.
    Plant Foods for Human Nutrition, 75(1), 110–115.
    Seyoum, A., Asres, K., & El-Fiky, F. K. 2006. Structure–radical scavenging
    activity relationships of flavonoids. Phytochemistry, 67(18), 2058–2070.
    Sharif, N., Khoshnoudi-Nia, S., & Jafari, S. M. 2020. Nano/microencapsulation
    of anthocyanins; a systematic review and meta-analysis. Food Research
    International, 132, 109077.
    Singh, M., Dubey, R. K., Koley, T. K., Maurya, A., Singh, P. M., & Singh, B.
    2019. Valorization of winged bean (Psophocarpus tetragonolobus (L) DC)
    by evaluation of its antioxidant activity through chemometric analysis.
    South African Journal of Botany, 121, 114–120.
    Sinopoli, A., Calogero, G., & Bartolotta, A. 2019. Computational aspects of
    anthocyanidins and anthocyanins: A review. Food Chemistry, 297, 124898.
    Suktham, T., Jones, A., Soliven, A., Dennis, G. R., & Shalliker, R. A. 2019. A
    comparison of the performance of the cupric reducing antioxidant
    potential assay and the ferric reducing antioxidant power assay for the
    analysis of antioxidants using reaction flow chromatography.
    Microchemical Journal, 149, 104046.
    Takada, N., Tanaka, M., Ishidoya, A., & Hayakari, M. 2020. Nicotianamine-
    rich foods for improving the learning and memory functions and as an
    effective preventing agent of hypertension. Food Bioscience, 37, 100729.
    Tarone, A. G., Cazarin, C. B. B., & Marostica Junior, M. R. 2020. Anthocyanins:
    New techniques and challenges in microencapsulation. Food Research
    International, 133, 109092.
    Teng, Z., Jiang, X., He, F., & Bai, W. 2020. Qualitative and quantitative
    methods to evaluate anthocyanins. EFood, 1(5), 339–346.
    Thitiratsakul, B., & Anprung, P. 2014. Prebiotic activity score and bioactive
    compounds in longan (Dimocarpus longan Lour.): Influence of pectinase
    in enzyme-assisted extraction. Journal of Food Science and Technology,
    51(9), 1947–1955.
    Thongnopnua, P., & Poeaknapo, C. 2005. High-performance liquid
    chromatographic determination of enalapril in human plasma by enzyme
    kinetic analytical method. Journal of Pharmaceutical and Biomedical
    Analysis, 37(4), 763–769.
    Tian, Z., Tan, Z., Li, Y., & Yang, Z. 2022. Rapid monitoring of flavonoid
    content in sweet tea (Lithocarpus litseifolius (Hance) Chun) leaves using
    NIR spectroscopy. Plant Methods, 18(1), 44.
    Villamil-Galindo, E., Van de Velde, F., & Piagentini, A. M. 2021. Strawberry
    agro-industrial by-products as a source of bioactive compounds: Effect of
    cultivar on the phenolic profile and the antioxidant capacity. Bioresources
    and Bioprocessing, 8(1), 61.
    Villaño, D., Fernández-Pachón, M. S., Moyá, M. L., Troncoso, A. M., &
    García-Parrilla, M. C. 2007. Radical scavenging ability of polyphenolic
    compounds towards DPPH free radical. Talanta, 71(1), 230–235.
    Villaño, D., Fernández-Pachón, M. S., Troncoso, A. M., & García-Parrilla, M.
    C. 2005. Comparison of antioxidant activity of wine phenolic compounds
    and metabolites in vitro. Analytica Chimica Acta, 538(1), 391–398.
    Violi, J. P., Bishop, D. P., Padula, M. P., Steele, J. R., & Rodgers, K. J. 2020.
    Considerations for amino acid analysis by liquid chromatography-tandem
    mass spectrometry: A tutorial review. TrAC Trends in Analytical
    Chemistry, 131, 116018.
    Wahl, O., & Holzgrabe, U. 2016. Amino acid analysis for pharmacopoeial
    purposes. Talanta, 154, 150–163.
    Wang, T., Li, Q., & Bi, K. 2018. Bioactive flavonoids in medicinal plants:
    Structure, activity and biological fate. Asian Journal of Pharmaceutical
    Sciences, 13(1), 12–23.
    Wang, Y., Branicky, R., Noë, A., & Hekimi, S. 2018. Superoxide dismutases:
    Dual roles in controlling ROS damage and regulating ROS signaling.
    Journal of Cell Biology, 217(6), 1915–1928.
    Wang, Y., Liu, C., Ma, T., & Zhao, J. 2019. Physicochemical and functional
    properties of γ-aminobutyric acid-treated soy proteins. Food Chemistry,
    295, 267–273.
    Weir, M. R., & Dzau, V. J. 1999. The renin-angiotensin-aldosterone system: A
    specific target for hypertension management. American Journal of
    Hypertension, 12(S9), 205S-213S.
    Wijesinghe, W. A. J. P., & Jeon, Y.-J. 2012. Enzyme-assistant extraction (EAE)
    of bioactive components: A useful approach for recovery of industrially
    important metabolites from seaweeds: A review. Fitoterapia, 83(1), 6–12.
    Wrolstad, R. E., Durst, R. W., & Lee, J. 2005. Tracking color and pigment
    changes in anthocyanin products. Trends in Food Science & Technology,
    16(9), 423–428.
    Wu, G. 2010. Functional amino acids in growth, reproduction, and health.
    Advances in Nutrition, 1(1), 31–37.
    Wu, G. 2013. Functional amino acids in nutrition and health. Amino Acids,
    45(3), 407–411.
    Wu, S.-B., Long, C., & Kennelly, E. J. 2013. Phytochemistry and health
    benefits of jaboticaba, an emerging fruit crop from Brazil. Food Research
    International, 54(1), 148–159.
    Xie, J., Du, M., Shen, M., Wu, T., & Lin, L. 2019. Physico-chemical properties,
    antioxidant activities and angiotensin-I converting enzyme inhibitory of
    protein hydrolysates from mung bean (Vigna radiate). Food Chemistry,
    270, 243–250.
    Xu, C., Liu, S., Liu, Z., Song, F., & Liu, S. 2013. Superoxide generated by
    pyrogallol reduces highly water-soluble tetrazolium salt to produce a
    soluble formazan: A simple assay for measuring superoxide anion radical
    scavenging activities of biological and abiological samples. Analytica
    Chimica Acta, 793, 53–60.
    Xu, C., Yagiz, Y., Borejsza-Wysocki, W., Lu, J., Gu, L., Ramírez-Rodrigues, M.
    M., & Marshall, M. R. 2014. Enzyme release of phenolics from muscadine
    grape (Vitis rotundifolia Michx.) skins and seeds. Food Chemistry, 157,
    20–29.
    Xu, Z., Wu, C., Sun-Waterhouse, D., Zhao, T., Waterhouse, G. I. N., Zhao, M.,
    & Su, G. 2021. Identification of post-digestion angiotensin-I converting
    enzyme (ACE) inhibitory peptides from soybean protein Isolate: Their
    production conditions and in silico molecular docking with ACE. Food
    Chemistry, 345, 128855.
    Xue, L., Yin, R., Howell, K., & Zhang, P. 2021. Activity and bioavailability of
    food protein‐derived angiotensin‐I‐converting enzyme–inhibitory
    peptides. Comprehensive Reviews in Food Science and Food Safety, 20(2),
    1150–1187.
    Yang, N.-C., Wu, C.-C., Liu, R. H., Chai, Y.-C., & Tseng, C. Y. 2016.
    Comparing the functional components, SOD-like activities,
    antimutagenicity, and nutrient compositions of Phellinus igniarius and
    Phellinus linteus mushrooms. Journal of Food and Drug Analysis, 24(2),
    343–349.
    Yang, X., Xu, M., Huang, G., Zhang, C., Pang, Y., & Cheng, Y. 2019. Effect of
    dietary L-tryptophan on the survival, immune response and gut microbiota
    of the Chinese mitten crab, Eriocheir sinensis. Fish & Shellfish
    Immunology, 84, 1007–1017.
    Zamani, M., Moradi Delfani, A., & Jabbari, M. 2018. Scavenging performance
    and antioxidant activity of γ-alumina nanoparticles towards DPPH free
    radical: Spectroscopic and DFT-D studies. Spectrochimica Acta Part A:
    Molecular and Biomolecular Spectroscopy, 201, 288–299.
    Zha, X.-Q., Li, X.-L., Zhang, H.-L., Cui, S.-H., Liu, J., Wang, J.-H., Pan, L.-H.,
    & Luo, J.-P. 2013. Pectinase hydrolysis of Dendrobium huoshanense
    polysaccharide and its effect on protein nonenzymatic glycation.
    International Journal of Biological Macromolecules, 61, 439–447.
    Zhang, L., Xiao, G., Yu, Y., Xu, Y., Wu, J., Zou, B., & Li, L. 2022. Low-oxygen
    pulping combined with high hydrostatic pressure improve the stability of
    blueberry pulp anthocyanins and color during storage. Food Control, 138,
    108991.
    Syama, H. P., Arya, A. D., Dhanya, R., Nisha, P., Sundaresan, A., Jacob, E., &
    Jayamurthy, P. 2017. Quantification of phenolics in Syzygium cumini
    seed and their modulatory role on tertiary butyl-hydrogen peroxide-
    induced oxidative stress in H9c2 cell lines and key enzymes in
    cardioprotection. Journal of Food Science and Technology, 54(7), 2115–
    2125.

    下載圖示
    QR CODE