簡易檢索 / 詳目顯示

研究生: 杜美心
Duangporn Sangsak
論文名稱: 叢枝菌根菌與土壤有益細菌對提高經濟作物(辣椒與鳳梨釋迦)氮吸收的應用
Application of Arbuscular Mycorrhizal Fungi and Beneficial Bacteria to Enhance Nitrogen Absorption of Economic Crops (Capsicum annuum & Annona cherimolae x Annona squamosa)
指導教授: 吳羽婷
Yu-Ting Wu
學位類別: 碩士
Master
系所名稱: 國際學院 - 熱帶農業暨國際合作系
Department of Tropical Agriculture and International Cooperation
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 73
中文關鍵詞: 叢枝菌根菌間作微生物多樣性固氮土壤細菌群落根域健康
外文關鍵詞: Arbuscular mycorrhiza fungi, Intercropping, Microbial diversity, Nitrogen fixation, Soil bacterial community, Rhizosphere healthy
研究方法: Experiment of 15N2 Stable isotope 、 Harvesting, Plant nutrient, and Soil chemical analysis 、 Soil microbial analyses 、 Soil physicochemical parameter analysis 、 DNA extraction, bacterial amplicon libraries, and DNA sequencing 、 Bioinformatics analyses 、 R Statistics (R.4.10) analyses of alpha-diversity indices
DOI URL: http://doi.org/10.6346/NPUST202300070
相關次數: 點閱:38下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 隨著全球暖化和人類活動,導致農業生產力下降。 化學肥料的過度使用以至土壤劣化及生物多樣性的損害是農業管理的主要問題。本研究調查了兩種經濟作物的產量(辣椒和釋迦),並提出以土壤肥力作為因應農業挑戰替代解決方案的重要性。
    本研究分為兩部分,第一部分將相思樹和辣椒接種叢枝菌根菌(AMF)促進養分吸收,同時接種特定固氮細菌(Bradyrhizobium elkanii)於相思樹。 另一方面,使用生物炭和有機改良劑以增加微生物活性。透過四種處理調查並比較間作對氮吸收、土壤化學性質和細菌群落結構的影響。四種處理包含單一辣椒栽植、單一栽植辣椒並接種叢枝菌根真菌、辣椒-相思樹間作(辣椒接種叢枝菌根真菌x相思樹接種固氮菌)、辣椒-相思樹間作種植於有機改良堆肥。 15N2同位素測定結果顯示,根中的同化氮高於莖和葉,尤其是在辣椒-相思樹間作種植於有機改良堆肥的處理。 間作促進了土壤對氮的吸收,並證明氮是從相思樹輸送到辣椒的結果與假設一致。 辣椒-相思樹間作系統的相互作用影響植物-土壤微生物和植物間的關係。其中以辣椒(+AMF)和相思樹(+固氮菌)間作種植於有機改良堆肥之處理效果最好。 AMF 增加土壤中的微生物組成多樣性並改善了養分吸收,相思樹則通過增強向作物輸送養分和氮素的機制來促進作物生長。
    第二部分研究試驗作物為鳳梨釋迦 (Annona cherimola x Annona squamosa),分析於斑鳩和頂岩灣兩地區間之根域有益微生物群落。由於近年全球暖化,導致病原菌和病蟲害問題增加,使苗木易受害且生長不良。 本研究初步揭示鳳梨釋迦生長健康/不良兩者間之根域細菌群落結構組成和土壤物理化學性質差異。結果指出,生長健康的鳳梨釋迦於兩個地區都含有有別於生長不良之鳳梨釋迦的根域特定細菌群。在未來,分離有益菌和幼苗移植田間栽種前之接種將有其必要性。

    Agriculture productivity declined as a result of global warming and human activities. The main problem of agricultural management was the overuse of chemical fertilizers that degraded the soil and harmed biodiversity. This research investigated two economic crop yields (chili and atemoya) and suggested the importance of soil fertility as an alternative solution to agricultural challenges.
    First, Acacia confusa and Capsicum annuum (chili) inoculated with arbuscular mycorrhizal fungi (AMF) enhanced nutrient uptake. Meanwhile, nitrogen-fixing bacteria (Bradyrhizobium elkanii) were specifically inoculated on acacia. On the other hand, biochar and organic amendments can increase microbial activity. The effects of the intercropping on nitrogen uptake, soil chemical properties, and bacterial community structure were investigated and compared across four treatments; chili monoculture, chili inoculated with arbuscular mycorrhizal fungi monoculture, chili-acacia intercropping (chili and arbuscular mycorrhizal fungi X acacia and nitrogen-fixing bacteria), and chili-acacia intercropping that planted in the amendment of organic compost. Thus, the assimilated nitrogen was observed higher in roots than stems and leaves, especially in chili inoculated with arbuscular mycorrhizal fungi and acacia in intercropping organic compost treatment using 15N2 assay. Consistent with the hypothesis, intercropping improved the soil nitrogen absorption; it indicated nitrogen transported from acacia to chili. The interaction of chili-acacia intercropping systems influenced plant-soil microbial and plant–plant relationship. The effects of intercropping indicated chili (+AMF) grew best in the intercropping system and with acacia (+nitrogen-fixing bacteria) planted in the amendment of organic compost. AMF increased the microbial composition in the soil and improved nutrient absorption. Acacia confusa promoted crop cultivation by enhancing the mechanism of nutrients and transportation of nitrogen to the crop.
    Second, the other crop of this study was atemoya or sugar apple (Annona cherimola x Annona squamosa). The rhizosphere microbial associated with healthy at Benjo and Dingyanwan was investigated. Since global warming has led to an increase in pathogen and pest issues in recent years, the seedlings are easily attacked and grow poorly. This study unrevealed the soil bacterial community composition and soil physicochemical parameters associated with healthy and unhealthy atemoya. This study confirmed that rhizosphere healthy atemoya at both sites harbored specific bacterial groups that differed from the unhealthy ones. In the future, the isolation of beneficial bacteria and inoculation of seedlings before being transferred to the field will be essential.

    摘要 I
    Abstract III
    Acknowledgements V
    Table of Contents VI
    List of Tables VIII
    List of Figures IX
    Chapter 1 Research Background 1
    1.1 Research aims and hypothesis 8
    Chapter 2 Effects of Chili-Acacia Intercropping on Nitrogen Absorption and Soil Bacterial Community Composition 9
    2.1 Introduction 9
    2.2 Materials and Methods 12
    2.2.1 Site description 12
    2.2.2 Experimental design and setup 12
    2.2.3 Experiment of 15N2 Stable isotope 17
    2.2.4 Harvesting, Plant nutrient, and Soil chemical analysis 19
    2.2.5 Soil microbial analyses 20
    2.2.6 Statistical and Data Analysis 22
    2.3 Results 23
    2.3.1 The growth and biomass of chili seedlings 23
    2.3.2 Nitrogen from nodules of Acacia confusa to Capsicum annuum (Chili) 27
    2.3.3 Soil chemical parameters of chili after harvest 29
    2.3.4 The rhizosphere bacteria community composition and diversity associated with chili and acacia across planting patterns 31
    2.3.5 Co-occurrence of chili (Capsicum annuum) and acacia (Acacia confusa) rhizosphere microbiome in different planting patterns. 36
    2.4 Discussion 38
    Chapter 3 Investigation of Bacteria Associated with Healthy and Unhealthy Annona cherimola x Annona squamosa 40
    3.1 Introduction 40
    3.2 Materials and methods 42
    3.2.1 Sampling site and sampling 42
    3.2.2 Soil physicochemical parameter analysis 42
    3.2.3 DNA extraction, bacterial amplicon libraries, and DNA sequencing 43
    3.2.4 Bioinformatics analyses and statistical analyses 44
    3.2.5 Data analysis 44
    3.3 Results 45
    3.3.1 Soil physicochemical properties 45
    3.3.2 Soil bacteria community composition and diversity of rhizosphere soil between healthy and unhealthy Annona cherimola x Annona squamosa 47
    3.3.3 Co-occurrence analysis of rhizosphere microbiome associated with healthy Annona cherimola x Annona squamosa at both sites 51
    3.3.4 Soil physicochemical properties shaped bacteria community composition 53
    3.4 Discussion 55
    Chapter 4 Conclusion and Perspectives 57
    References 59

    Agustiyani, D., Purwaningsih, S., Dewi, T., Nditasari, A., Nugroho, A., Sutisna, E., Mulyani, N., and Antonius, S. 2022. Characterization of PGPR isolated from rhizospheric soils of various plant and its effect on growth of radish (Raphanus sativus L.). In:IOP Conference Series: Earth and Environmental Science, edited by, 012037. IOP Publishing.
    Amadu, F. O., McNamara, P. E., and Davis, K. E. 2021. Soil health and grain yield impacts of climate resilient agriculture projects: Evidence from southern Malawi. Agricultural Systems, 193: 103230.
    Armada, E., Azcón, R., López-Castillo, O. M., Calvo-Polanco, M., and Ruiz-Lozano, J. M. 2015. Autochthonous arbuscular mycorrhizal fungi and Bacillus thuringiensis from a degraded Mediterranean area can be used to improve physiological traits and performance of a plant of agronomic interest under drought conditions. Plant Physiology and Biochemistry, 90: 64-74.
    Backer, R., Rokem, J. S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S., and Smith, D. L. 2018. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in plant science: 1473.
    Bago, B., Pfeffer, P. E., and Shachar-Hill, Y. 2000. Carbon metabolism and transport in arbuscular mycorrhizas. Plant physiology, 124: 949-958.
    Bahadur, A., Jin, Z., Long, X., Jiang, S., Zhang, Q., Pan, J., Liu, Y., and Feng, H. 2019. Arbuscular mycorrhizal fungi alter plant interspecific interaction under nitrogen fertilization. European Journal of Soil Biology, 93: 103094.
    Baldock, J., and Nelson, P. 2000. Soil organic matter. CRC press,
    Balemi, T., and Negisho, K. 2012. Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: a review. Journal of soil science and plant nutrition, 12: 547-562.
    Barea, J.-M., Pozo, M. J., Azcon, R., and Azcon-Aguilar, C. 2005. Microbial co-operation in the rhizosphere. Journal of experimental botany, 56: 1761-1778.
    Bargaz, A., Lyamlouli, K., Chtouki, M., Zeroual, Y., and Dhiba, D. 2018. Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Frontiers in microbiology, 9: 1606.
    Bastida, F., Torres, I. F., Moreno, J. L., Baldrian, P., Ondoño, S., Ruiz‐Navarro, A., Hernández, T., Richnow, H. H., Starke, R., and García, C. 2016. The active microbial diversity drives ecosystem multifunctionality and is physiologically related to carbon availability in Mediterranean semi‐arid soils. Molecular Ecology, 25: 4660-4673.
    Basu, S., and Kumar, G. 2020. Nitrogen fixation in a legume-rhizobium symbiosis: the roots of a success story. In:Plant Microbe Symbiosis, Springer, 35-53.
    Bauer, J. T., Kleczewski, N. M., Bever, J. D., Clay, K., and Reynolds, H. L. 2012. Nitrogen-fixing bacteria, arbuscular mycorrhizal fungi, and the productivity and structure of prairie grassland communities. Oecologia, 170: 1089-1098.
    Beattie, G. A. 2015. Curating communities from plants. Nature, 528: 340-341.

    Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., Ahmed, N., and Zhang, L. 2019. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Frontiers in plant science: 1068.
    Boonlue, S., Surapat, W., Pukahuta, C., Suwanarit, P., Suwanarit, A., and Morinaga, T. 2012. Diversity and efficiency of arbuscular mycorrhizal fungi in soils from organic chili (Capsicum frutescens) farms. Mycoscience, 53: 10-16.
    Borrero, C., Trillas, M. I., Ordovás, J., Tello, J. C., and Avilés, M. 2004. Predictive factors for the suppression of Fusarium wilt of tomato in plant growth media. Phytopathology, 94: 1094-1101.
    Bossio, D. A., Scow, K. M., Gunapala, N., and Graham, K. 1998. Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microbial ecology, 36: 1-12.
    Bothe, H., Ferguson, S., and Newton, W. E. 2006. Biology of the nitrogen cycle Elsevier
    Brandão, A. P. E., and Santos, D. Y. A. 2016. Nutritional value of the pulp of different sugar apple cultivars (Annona squamosa L.). In:Nutritional Composition of Fruit Cultivars, Elsevier, 195-214.
    Bray, R. H., and Kurtz, L. T. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil science, 59: 39-46.
    Brundrett, M. C., and Abbott, L. K. 2002. Arbuscular mycorrhizas in plant communities. In:Microorganisms in plant conservation and biodiversity, Springer, 151-193.

    Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S. P. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nature methods, 13: 581-583.
    Chen, P., Du, Q., Liu, X., Zhou, L., Hussain, S., Lei, L., Song, C., Wang, X., Liu, W., and Yang, F. 2017. Effects of reduced nitrogen inputs on crop yield and nitrogen use efficiency in a long-term maize-soybean relay strip intercropping system. PloS one, 12: e0184503.
    Delgado‐Baquerizo, M., Trivedi, P., Trivedi, C., Eldridge, D. J., Reich, P. B., Jeffries, T. C., and Singh, B. K. 2017. Microbial richness and composition independently drive soil multifunctionality. Functional Ecology, 31: 2330-2343.
    Domínguez-Núñez, J. A., and Berrocal-Lobo, M. 2021. Application of microorganisms in forest plant. In:Biofertilizers, Elsevier, 265-287.
    Donn, S., Wheatley, R. E., McKenzie, B. M., Loades, K. W., and Hallett, P. D. 2014. Improved soil fertility from compost amendment increases root growth and reinforcement of surface soil on slopes. Ecological Engineering, 71: 458-465.
    Edgar, R. C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature methods, 10: 996-998.
    Eichorst, S. A., Trojan, D., Roux, S., Herbold, C., Rattei, T., and Woebken, D. 2018. Genomic insights into the Acidobacteria reveal strategies for their success in terrestrial environments. Environmental microbiology, 20: 1041-1063.
    Emmanuel, O. C., and Babalola, O. O. 2020. Productivity and quality of horticultural crops through co-inoculation of arbuscular mycorrhizal fungi and plant growth promoting bacteria. Microbiological Research, 239: 126569.

    Faye, A., Krasova-Wade, T., Thiao, M., Thioulouse, J., Neyra, M., Prin, Y., Galiana, A., Ndoye, I., Dreyfus, B., and Duponnois, R. 2009. Controlled ectomycorrhization of an exotic legume tree species Acacia holosericea affects the structure of root nodule bacteria community and their symbiotic effectiveness on Faidherbia albida, a native Sahelian Acacia. Soil Biology and Biochemistry, 41: 1245-1252.
    Fierer, N., and Jackson, R. B. 2006. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences, 103: 626-631.
    FU, Z., Li, Z., Ping, C., Qing, D., Ting, P., Chun, S., WANG, X., LIU, W., YANG, W. and YONG, T. 2019. Effects of maize-soybean relay intercropping on crop nutrient uptake and soil bacterial community. Journal of Integrative Agriculture, 18: 2006-2018.
    Gaby, J. C., and Buckley, D. H. 2015. Assessment of nitrogenase diversity in the environment. Biological nitrogen fixation. Chichester: John Wiley & Sons: 209-216.
    Gerdemann, J., and Nicolson, T. H. 1963. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological society, 46: 235-244.
    Gianinazzi, S., Gollotte, A., Binet, M.-N., van Tuinen, D., Redecker, D., and Wipf, D. 2010. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza, 20: 519-530.
    Glick, B. R. 2012. Plant growth-promoting bacteria: mechanisms and applications. Scientifica, 2012.

    Goss, M. J., Tubeileh, A., and Goorahoo, D. 2013. A review of the use of organic amendments and the risk to human health. Advances in agronomy, 120: 275-379.
    Gu, S., Hu, Q., Cheng, Y., Bai, L., Liu, Z., Xiao, W., Gong, Z., Wu, Y., Feng, K., and Deng, Y. 2019. Application of organic fertilizer improves microbial community diversity and alters microbial network structure in tea (Camellia sinensis) plantation soils. Soil and Tillage Research, 195: 104356.
    Hack, C. M., Porta, M., Schäufele, R., and Grimoldi, A. A. 2019. Arbuscular mycorrhiza mediated effects on growth, mineral nutrition and biological nitrogen fixation of Melilotus alba Med. in a subtropical grassland soil. Applied Soil Ecology, 134: 38-44.
    Hamel, C. 2004. Impact of arbuscular mycorrhizal fungi on N and P cycling in the root zone. Canadian Journal of Soil Science, 84: 383-395.
    Hijri, M., and Bâ, A. 2018. Mycorrhiza in tropical and neotropical ecosystems. In, 308. Frontiers Media SA.
    Höllerhage, M., Rösler, T. W., Berjas, M., Luo, R., Tran, K., Richards, K. M., Sabaa-Srur, A. U., Maia, J. G. S., Moraes, M. R. d., and Godoy, H. T. 2015. Neurotoxicity of dietary supplements from Annonaceae species. International journal of toxicology, 34: 543-550.
    Howden, S. M., Soussana, J.-F., Tubiello, F. N., Chhetri, N., Dunlop, M., and Meinke, H. 2007. Adapting agriculture to climate change. Proceedings of the National Academy of Sciences, 104: 19691-19696.

    Jeffery, S., Verheijen, F. G., van der Velde, M., and Bastos, A. C. 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems & Environment, 144: 175-187.
    Jiang, Y., Wang, W., Xie, Q., Liu, N., Liu, L., Wang, D., Zhang, X., Yang, C., Chen, X., and Tang, D. 2017. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science, 356: 1172-1175.
    Jochum, T., Fastnacht, A., Trumbore, S. E., Popp, J. r., and Frosch, T. 2017. Direct Raman spectroscopic measurements of biological nitrogen fixation under natural conditions: an analytical approach for studying nitrogenase activity. Analytical chemistry, 89: 1117-1122.
    Jung, S. C., Martinez-Medina, A., Lopez-Raez, J. A., and Pozo, M. J. 2012. Mycorrhiza-induced resistance and priming of plant defenses. Journal of chemical ecology, 38: 651-664.
    Kalam, S., Basu, A., Ahmad, I., Sayyed, R., El-Enshasy, H. A., Dailin, D. J., and Suriani, N. L. 2020. Recent understanding of soil acidobacteria and their ecological significance: a critical review. Frontiers in microbiology: 2712.
    Koutika, L.-S., Tchichelle, S. V., Mareschal, L., and Epron, D. 2017. Nitrogen dynamics in a nutrient-poor soil under mixed-species plantations of eucalypts and acacias. Soil Biology and Biochemistry, 108: 84-90.
    Lee, J.-T., Tsai, S.-M., and Lin, C.-H. 2017. The nitrogen-fixing Bradyrhizobium elkanii significantly stimulates root development and pullout resistance of Acacia confusa. African Journal of Biotechnology, 16: 1067-1077.

    Li, Q., Zhang, D., Song, Z., Ren, L., Jin, X., Fang, W., Yan, D., Li, Y., Wang, Q., and Cao, A. 2022. Organic fertilizer activates soil beneficial microorganisms to promote strawberry growth and soil health after fumigation. Environmental Pollution, 295: 118653.
    Lipper, L., Thornton, P., Campbell, B. M., Baedeker, T., Braimoh, A., Bwalya, M., Caron, P., Cattaneo, A., Garrity, D., and Henry, K. 2014. Climate-smart agriculture for food security. Nature climate change, 4: 1068-1072.
    Liu, L., Wang, Y., Yan, X., Li, J., Jiao, N., and Hu, S. 2017. Biochar amendments increase the yield advantage of legume-based intercropping systems over monoculture. Agriculture, Ecosystems & Environment, 237: 16-23.
    Liu, Y., Lu, M., Zhang, X., Sun, Q., Liu, R., and Lian, B. 2019. Shift of the microbial communities from exposed sandstone rocks to forest soils during pedogenesis. International Biodeterioration & Biodegradation, 140: 21-28.
    Luginbuehl, L. H., Menard, G. N., Kurup, S., Van Erp, H., Radhakrishnan, G. V., Breakspear, A., Oldroyd, G. E., and Eastmond, P. J. 2017. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science, 356: 1175-1178.
    Luo, L., Yan, J., Wang, X., and Sun, Z. 2021. The correlation between chili pepper consumption and gastric cancer risk: A meta-analysis. Asia Pacific Journal of Clinical Nutrition, 30.
    MacDonald, C. 1972. Methods of soil and tissue analysis used in the analytical laboratory Maritimes Forest Research Centre, Canadian Forestry Service, Department of Environment.

    Mahdi, S. S., Hassan, G., Samoon, S., Rather, H., Dar, S. A., and Zehra, B. 2010. Bio-fertilizers in organic agriculture. Journal of phytology, 2: 42-54.
    Matiwane, S., Aremu, A., Valentine, A., and Magadlela, A. 2019. Nutritional status of KwaZulu-Natal soils affects microbe symbiosis, nitrogen utilization and growth of Vigna radiata (L.) R. Walczak. South African Journal of Botany, 126: 115-120.
    McKenzie, N., Jacquier, D., Isbell, R., and Brown, K. 2004. Australian soils and landscapes: an illustrated compendium CSIRO publishing
    McLean, E. 1983. Soil pH and lime requirement. Methods of soil analysis: Part 2 chemical and microbiological properties, 9: 199-224.
    Mejía-Teniente, L., Durán-Flores, B. A., Torres-Pacheco, I., González-Chavira, M. M., Rivera-Bustamante, R. F., Feregrino-Perez, A. A., Pérez-Ramírez, I., Rocha-Guzmán, N. E., Reynoso-Camacho, R., and Guevara-González, R. G. 2019. Hydrogen peroxide protects pepper (Capsicum annuum L.) against pepper golden mosaic geminivirus (PepGMV) infections. Physiological and Molecular Plant Pathology, 106: 23-29.
    Mendes, R., Kruijt, M., De Bruijn, I., Dekkers, E., van der Voort, M., Schneider, J. H., Piceno, Y. M., DeSantis, T. Z., Andersen, G. L., and Bakker, P. A. 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 332: 1097-1100.
    Money, N. P. 2016. Fungal diversity. In:The fungi, Elsevier, 1-36.

    Mortimer, P. E., Le Roux, M. R., Pérez-Fernández, M. A., Benedito, V. A., Kleinert, A., Xu, J., and Valentine, A. J. 2013. The dual symbiosis between arbuscular mycorrhiza and nitrogen fixing bacteria benefits the growth and nutrition of the woody invasive legume Acacia cyclops under nutrient limiting conditions. Plant and soil, 366: 229-241.
    Muthukumar, T., and Udaiyan, K. 2018. Coinoculation of bioinoculants improve Acacia auriculiformis seedling growth and quality in a tropical Alfisol soil. Journal of Forestry Research, 29: 663-673.
    Olanrewaju, O. S., Glick, B. R., and Babalola, O. O. 2017. Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology, 33: 1-16.
    Oliveira, J. Q. d., Jesus, E. d. C., Lisboa, F. J., Berbara, R. L. L., and Faria, S. M. d. 2017. Nitrogen-fixing bacteria and arbuscular mycorrhizal fungi in Piptadenia gonoacantha (Mart.) Macbr. brazilian journal of microbiology, 48: 95-100.
    Omirou, M., Fasoula, D. A., and Ioannides, I. M. 2016. Bradyrhizobium inoculation alters indigenous AMF community assemblages and interacts positively with AMF inoculum to improve cowpea performance. Applied Soil Ecology, 108: 381-389.
    Palenzuela, J., Azcon-Aguilar, C., Figueroa, D., Caravaca, F., Roldán, A., and Barea, J. 2002. Effects of mycorrhizal inoculation of shrubs from Mediterranean ecosystems and composted residue application on transplant performance and mycorrhizal developments in a desertified soil. Biology and fertility of soils, 36: 170-175.
    Pane, C., Celano, G., Piccolo, A., Villecco, D., Spaccini, R., Palese, A. M., and Zaccardelli, M. 2015. Effects of on-farm composted tomato residues on soil biological activity and yields in a tomato cropping system. Chemical and Biological Technologies in Agriculture, 2: 1-13.
    Paul, E. A. 2014. Soil microbiology, ecology and biochemistry Academic press
    Peoples, M. B., Unkovich, M. J., and Herridge, D. F. 2009. Measuring symbiotic nitrogen fixation by legumes. Nitrogen fixation in crop production, 52: 125-170.
    Pérez-Piqueres, A., Edel-Hermann, V., Alabouvette, C., and Steinberg, C. 2006. Response of soil microbial communities to compost amendments. Soil Biology and Biochemistry, 38: 460-470.
    Postgate, J. R. 1982. Biological nitrogen fixation: fundamentals. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 296: 375-385.
    Redecker, D., Schüßler, A., Stockinger, H., Stürmer, S. L., Morton, J. B., and Walker, C. 2013. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza, 23: 515-531.
    Roley, S. S., Xue, C., Hamilton, S. K., Tiedje, J. M., and Robertson, G. P. 2019. Isotopic evidence for episodic nitrogen fixation in switchgrass (Panicum virgatum L.). Soil Biology and Biochemistry, 129: 90-98.
    Roper, M., and Gupta, V. 2016. Enhancing Non-symbiotic N Fixation in Agriculture. The Open Agriculture Journal, 10.
    Schepers, J., Francis, D., and Thompson, M. 1989. Simultaneous determination of total C, total N, and 15N on soil and plant material. Communications in Soil Science and Plant Analysis, 20: 949-959.
    Schmidhuber, J., and Tubiello, F. N. 2007. Global food security under climate change. Proceedings of the National Academy of Sciences, 104: 19703-19708.

    Schwab, S. M., Menge, J. A., and Tinker, P. 1991. Regulation of nutrient transfer between host and fungus in vesicular—arbuscular mycorrhizas. New Phytologist, 117: 387-398.
    Scotti, R., Conte, P., Berns, A. E., Alonzo, G., and Rao, M. A. 2013. Effect of organic amendments on the evolution of soil organic matter in soils stressed by intensive agricultural practices. Current Organic Chemistry, 17: 2998-3005.
    Scotti, R., D'ascoli, R., Gonzalez Caceres, M., Bonanomi, G., Sultana, S., Cozzolino, L., Scelza, R., Zoina, A., and Rao, M. 2015. Combined use of compost and wood scraps to increase carbon stock and improve soil quality in intensive farming systems. European Journal of Soil Science, 66: 463-475.
    Shen, Z., Ruan, Y., Chao, X., Zhang, J., Li, R., and Shen, Q. 2015. Rhizosphere microbial community manipulated by 2 years of consecutive biofertilizer application associated with banana Fusarium wilt disease suppression. Biology and fertility of soils, 51: 553-562.
    Silver, W. L., Neff, J., McGroddy, M., Veldkamp, E., Keller, M., and Cosme, R. 2000. Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian forest ecosystem. Ecosystems, 3: 193-209.
    Smercina, D. N., Evans, S. E., Friesen, M. L., and Tiemann, L. K. 2019. To fix or not to fix: controls on free-living nitrogen fixation in the rhizosphere. Applied and Environmental Microbiology, 85: e02546-02518.
    Spain, A. M., Krumholz, L. R., and Elshahed, M. S. 2009. Abundance, composition, diversity and novelty of soil Proteobacteria. The ISME journal, 3: 992-1000.

    Spatafora, J. W., Chang, Y., Benny, G. L., Lazarus, K., Smith, M. E., Berbee, M. L., Bonito, G., Corradi, N., Grigoriev, I., and Gryganskyi, A. 2016. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia, 108: 1028-1046.
    Szczech, M., and Smolińska, U. 2001. Comparison of suppressiveness of vermicomposts produced from animal manures and sewage sludge against Phytophthora nicotianae Breda de Haan var. nicotianae. Journal of Phytopathology, 149: 77-82.
    Tarkka, M. T., Drigo, B., and Deveau, A. 2018. Mycorrhizal microbiomes. Mycorrhiza, 28: 403-409.
    Tchichelle, S. V., Mareschal, L., Koutika, L.-S., and Epron, D. 2017. Biomass production, nitrogen accumulation and symbiotic nitrogen fixation in a mixed-species plantation of eucalypt and acacia on a nutrient-poor tropical soil. Forest Ecology and Management, 403: 103-111.
    Team, R. C. 2013. R: A language and environment for statistical computing.
    Thamsurakul, S., and Charoensook, S. 2006. Mycorrhizal fungi as biofertilizer for fruit tree production in Thailand. In:International Workshop on Sustained Management of the Soil-Rhizosphere System for Efficient Crop Production and Fertilizer Use, Institute of Research and Development for Agriculture, Chiangmai ,Thailand.
    Thomas, G. W. 1983. Exchangeable cations. Methods of soil analysis: Part 2 chemical and microbiological properties, 9: 159-165.
    Trouvelot, A., Kough, J., and Gianinazzi-Pearson, V. 1986. Estimation of vesicular arbuscular mycorrhizal infection levels. Research for methods having a functional significance. In:Physiological and genetical aspects of mycorrhizae= Aspects physiologiques et genetiques des mycorhizes: proceedings of the 1st European Symposium on Mycorrhizae, Dijon, 1-5 July 1985, edited by. Paris: Institut national de le recherche agronomique, c1986.
    Verbruggen, E., van der Heijden, M. G., Rillig, M. C., and Kiers, E. T. 2013. Mycorrhizal fungal establishment in agricultural soils: factors determining inoculation success. New Phytologist, 197: 1104-1109.
    Voigtlaender, M., Laclau, J.-P., Gonçalves, J. L. d. M., Piccolo, M. d. C., Moreira, M. Z., Nouvellon, Y., Ranger, J., and Bouillet, J.-P. 2012. Introducing Acacia mangium trees in Eucalyptus grandis plantations: consequences for soil organic matter stocks and nitrogen mineralization. Plant and soil, 352: 99-111.
    Wang, Y., Ma, Z., Wang, X., Sun, Q., Dong, H., Wang, G., Chen, X., Yin, C., Han, Z., and Mao, Z. 2019. Effects of biochar on the growth of apple seedlings, soil enzyme activities and fungal communities in replant disease soil. Scientia Horticulturae, 256: 108641.
    Wu, Q., Srivastava, A. K., and Zou, Y. 2013. AMF-induced tolerance to drought stress in citrus: a review. Scientia Horticulturae, 164: 77-87.
    Xiong, W., Li, R., Ren, Y., Liu, C., Zhao, Q., Wu, H., Jousset, A., and Shen, Q. 2017. Distinct roles for soil fungal and bacterial communities associated with the suppression of vanilla Fusarium wilt disease. Soil Biology and Biochemistry, 107: 198-207.
    Zhang, H., Wang, R., Chen, S., Qi, G., He, Z., and Zhao, X. 2017. Microbial taxa and functional genes shift in degraded soil with bacterial wilt. Scientific reports, 7: 1-11.
    Zhang, L., Zhang, M., Li, Y., Li, J., Jing, Y., Xiang, Y., Yao, B., and Deng, Q. 2022. Linkage of crop productivity to soil nitrogen dynamics under biochar addition: A meta-analysis across field studies. Agronomy, 12: 247.

    Zhang, M., Zhang, L., Riaz, M., Xia, H., and Jiang, C. 2021. Biochar amendment improved fruit quality and soil properties and microbial communities at different depths in citrus production. Journal of Cleaner Production, 292: 126062.
    Zhang, Y., Wang, W., Shen, Z., Wang, J., Chen, Y., Wang, D., Liu, G., and Han, M. 2021. Comparison and interpretation of characteristics of Rhizosphere microbiomes of three blueberry varieties. BMC microbiology, 21: 1-13.
    Zhao, J., Ni, T., Li, J., Lu, Q., Fang, Z., Huang, Q., Zhang, R., Li, R., Shen, B., and Shen, Q. 2016. Effects of organic–inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice–wheat cropping system. Applied Soil Ecology, 99: 1-12.
    Zhao, Y., Fu, W., Hu, C., Chen, G., Xiao, Z., Chen, Y., Wang, Z., and Cheng, H. 2021. Variation of rhizosphere microbial community in continuous mono-maize seed production. Scientific reports, 11: 1-13.
    Zhu, C., Tian, G., Luo, G., Kong, Y., Guo, J., Wang, M., Guo, S., Ling, N., and Shen, Q. 2018. N-fertilizer-driven association between the arbuscular mycorrhizal fungal community and diazotrophic community impacts wheat yield. Agriculture, Ecosystems & Environment, 254: 191-201.

    無法下載圖示 校外公開
    2028/02/07
    QR CODE