簡易檢索 / 詳目顯示

研究生: 汪秉儒
Bing-Ru, Wong
論文名稱: 光學檢測應用於農產品花青素含量與糖度之研究
Study of Anthocyanin Contents and Sugar Contents of Agricultural Products by Optical Inspection
指導教授: 陳建興
Chien-Hsing Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 生物機電工程系所
Department of Biomechatronics Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 95
中文關鍵詞: 光學檢測花青素近紅外光譜白利糖度
外文關鍵詞: optical inspection, anthocyanin, near-infrared spectroscopy, sugar
DOI URL: http://doi.org/10.6346/NPUST202300084
相關次數: 點閱:46下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 本研究利用光學檢測技術研發可應用於農業領域的光學檢測系統:包含檢測萵苣中花青素含量的花青素光譜檢測系統及花青素光強度檢測系統;以及網紋洋香瓜糖度近紅外反射譜光檢測系統。
    花青素光譜檢測系統是利用花青素的吸收光譜波段進行分析,單一波長541 nm花青素濃度感測靈敏度(斜率)為0.0006 (1/μg/g),r=0.9624,波長相減541−650 nm花青素濃度靈敏度(斜率)為0.0002 (1/μg/g),r=0.9617,波長相加541+650 nm花青素濃度靈敏度(斜率)為0.0011 (1/μg/g),r=0.9626。
    花青素光強度檢測系統中,使用ADS1115(16 bit)做為資料擷取器,以LED及光電二極體取代寬頻光源及光譜儀量測萵苣電壓輸出值,預測花青素的濃度,在單一波長下花青素濃度靈敏度(斜率)為0.0028 (1/μg/g),r =0.5621,波長相減下花青素濃度靈敏度(斜率)為0.0012 (1/μg/g),r=0.1593,波長相加下花青素濃度靈敏度(斜率)為0.0045 (1/μg/g),r=0.5857。
    網紋洋香瓜糖度近紅外光譜檢測系統透過實際量白利糖度,說明白利糖度及相對光強度的關係,進行網紋洋香瓜白利糖度的預測,結果波段1156-1050 nm的感測靈敏度(斜率)為-0.1466 (1/Brix),r為-0.6380;波段964-1050 nm感測靈敏度(斜率)為-0.0732 (1/Brix),r為-0.6107。

    In this study, we aim to study anthocyanin contents and sugar contents of agricultural products by optical inspection. The optical inspection system includes an optical spectral system for anthocyanin, a light intensity system for anthocyanin, and near-infrared spectroscopy for sugar contents of netted cantaloupe.
    The optical spectral system for anthocyanin uses the absorption spectrum band for analysis. The result shows that the sensor sensitivity of anthocyanin concentration (slope) was 0.0006 (1/μg/g), r=0.9624 at a single wavelength of 541 nm. The sensor sensitivity of anthocyanin concentration(slope) of the 650−541 nm is 0.0002 (1/μg/g), r=0.9617. The sensor sensitivity of anthocyanin concentration (slope) of the 650+541 nm is 0.0011 (1/μg/g), r=0.9626

    The light intensity system of anthocyanin uses the ADS1115 (16-bit) to achieve data collection. LED and photodiode replace broadband light source and spectrometer to measure the output voltage of lettuce. Prediction of the concentration of anthocyanin by the output voltage. The sensor sensitivity of anthocyanin concentration (slope) was 0.0028 (1/μg/g), r = 0.5621 at a single wavelength of 541 nm., The sensor sensitivity of anthocyanin concentration (slope) of the 650−541 nm is 0.0012 (1/μg/g), r=0.1593. The sensor sensitivity of anthocyanin concentration (slope) of the 650+541 nm is 0.0045 (1/μg/g), r=0.5857
    The near-infrared spectroscopy for sugar contents of netted cantaloupe explains the relationship between Brix and relative light intensity and the prediction of the sugar contents of netted cantaloupe. The sugar concentration sensitivity (slope) of the 1156−1050 nm and 964−1050 nm were -0.1466 (1/μg/g), r=-0.6380, and -0.0732 (1/μg/g), r=-0.6107, respectively. Such an optical inspection system with high potential can develop to analyze the contents of agricultural products in the future.

    第一章、 緒論 1
    1.1. 研究背景 1
    1.2. 研究動機及目的 2
    1.3. 論文架構 4
    第二章、 文獻探討 5
    2.1. 常見農產品非破壞檢測方法 5
    2.2. 花青素的檢測方法 6
    2.3. 糖度的預估與檢測 8
    2.4. 水與蔗糖的光譜特性 11
    第三章、 材料與方法 14
    3.1. 可見光/近紅外光譜法 14
    3.2. 檢測樣本 16
    3.4. 花青素光譜檢測系統與分析方法 20
    3.5. 花青素光強度檢測系統與分析方法 24
    3.6. 標準溶液測定-甲醇萃取法與丙酮萃取法 29
    3.6.1. 甲醇萃取法 29
    3.6.2. 丙酮萃取法 29
    3.7. 萵苣-花青素光強度檢測系統與分析方法 30
    3.7.1. 夾具構造 31
    3.8. 蔗糖溶液折射率近紅外光譜檢測系統與分析方法 33
    3.9. 網紋洋香瓜糖度近紅外反射光譜檢測系統與分析方法 37
    第四章、結果與討論 40
    4.1. 花青素溶液量測結果 40
    4.2. 花青素葉綠素混合溶液量測結果 42
    4.3. 萵苣-花青素光強度檢測系統穩定度 49
    4.4. 萵苣-花青素光強度檢測系統量測電壓 53
    4.5. 萵苣花青素含量 72
    4.6. 蔗糖溶液折射率近紅外光譜結果 80
    4.7. 網紋洋香瓜糖度近紅外光譜檢測系統結果 84
    4.7.1.網紋洋香瓜原始光譜 84
    4.7.2.網紋洋香瓜預測白利糖度結果 84
    第五章、結論 91
    5.1. 結論 91
    5.2. 未來展望 92
    參考文獻 92

    1. Das, R. and C. Bhattacharjee, Lettuce, in Nutritional Composition and Antioxidant Properties of Fruits and Vegetables. 2020. p. 143-157.
    2. 謝明憲, 台灣與日本之萵苣市場交易品項及趨勢簡圖, 臺南區農業專訊,2017.100 : p. 1-2
    3. Mu, T., et al., Chapter 6 - Sweet Potato Anthocyanins, in Sweet Potato Processing Technology, T. Mu, et al., Editors. 2017, Academic Press. p. 279-355.
    4. Burton-Freeman, B., A. Sandhu, and I. Edirisinghe, Chapter 35 - Anthocyanins, in Nutraceuticals, R.C. Gupta, Editor. 2016, Academic Press: Boston. p. 489-500.
    5. Gazula, A., et al., Anthocyanin Levels in Nine Lettuce (Lactuca sativa) Cultivars: Influence of Planting Date and Relations among Analytic, Instrumented, and Visual Assessments of Color. HortScience HORTS, 2007. 42(2): p. 232-238.
    6. Awad, M.A. and A. de Jager, Influences of air and controlled atmosphere storage on the concentration of potentially healthful phenolics in apples and other fruits. Postharvest Biology and Technology, 2003. 27(1): p. 53-58.
    7. Gilbert, M.T., Chapter 2 - Basic Chromatographic Theory, in High Performance Liquid Chromatography, M.T. Gilbert, Editor. 1987, Butterworth-Heinemann. p. 5-11.
    8. Smith, I. and R.S. Ersser, CHAPTER 3 - THIN LAYER CHROMATOGRAPHY, in Paper and Thin Layer Chromatography (Fourth Edition), I. Smith and J.W.T. Seakins, Editors. 1976, Butterworth-Heinemann. p. 40-56.
    9. Li, M., F. Feng, and L. Cheng, Expression Patterns of Genes Involved in Sugar Metabolism and Accumulation during Apple Fruit Development. PLOS ONE, 2012. 7(3): p. e33055.
    10. Ma, C., et al., Simultaneous separation and determination of fructose, sorbitol, glucose and sucrose in fruits by HPLC–ELSD. Food Chemistry, 2014. 145: p. 784-788.
    11. Nie, J., et al., Evaluation indices for apple physicochemical quality. Scientia Agricultura Sinica, 2012. 45(14): p. 2895-2903.
    12. Eichhorn Bilodeau, S., et al., An Update on Plant Photobiology and Implications for Cannabis Production. Frontiers in Plant Science, 2019. 10.
    13. Cubero, S., et al., Advances in Machine Vision Applications for Automatic Inspection and Quality Evaluation of Fruits and Vegetables. Food and Bioprocess Technology, 2011. 4(4): p. 487-504.
    14. Khairi, M.T.M., et al., Contact and non-contact ultrasonic measurement in the food industry: a review. Measurement Science and Technology, 2015. 27(1): p. 012001.
    15. Salimi, M., et al., A Mobile Analytical Device for On-Site Quantitation of Anthocyanins in Fruit Beverages. Micromachines (Basel), 2021. 12(3).
    16. Gitelson, A.A., M.N. Merzlyak, and O.B. Chivkunova, Optical properties and nondestructive estimation of anthocyanin content in plant leaves¶. Photochemistry and photobiology, 2001. 74(1): p. 38-45.
    17. 鍾昭台, et al., 近紅外線光譜技術應用於蓮霧糧度檢測之研究. 農業機械學刊, 2004. 13(4): p. 13-25.
    18. Kawano, S., H. Watanabe, and M. Iwamoto, Determination of Sugar Content in Intact Peaches by Near Infrared Spectroscopy with Fiber Optics in Interactance Mode. Journal of the Japanese Society for Horticultural Science, 1992. 61(2): p. 445-451.
    19. Guthrie, J., B. Wedding, and K. Walsh, Robustness of NIR Calibrations for Soluble Solids in Intact Melon and Pineapple. Journal of Near Infrared Spectroscopy, 1998. 6(1): p. 259-265.
    20. Sugiyama, J., Visualization of Sugar Content in the Flesh of a Melon by Near-Infrared Imaging. Journal of Agricultural and Food Chemistry, 1999. 47(7): p. 2715-2718.
    21. 張文宏, 陳世銘, and 郭立穎, 洋香瓜糖度檢測之研究-(二) 近紅外線分析法. 農業機械學刊, 1998. 7(1): p. 87-98.
    22. 李汪盛, 非破壞厚皮水果糖度測定儀之研發. 桃園區農業改良場研究彙報, 2016. 79: p. 59-72.
    23. 艾群, 生物系統量測. 2016. 蒼海圖書. 新北市: p. 2-34,2-35.
    24. Zeb, A., et al., Is this melon sweet? A quantitative classification for near-infrared spectroscopy. Infrared Physics & Technology, 2021. 114: p. 103645.
    25. Curcio, J.A. and C.C. Petty, The Near Infrared Absorption Spectrum of Liquid Water. Journal of the Optical Society of America, 1951. 41(5): p. 302-304.
    26. Palmer, K.F. and D. Williams, Optical properties of water in the near infrared*. Journal of the Optical Society of America, 1974. 64(8): p. 1107-1110.
    27. Skoog, D.A., F.J. Holler, and T.A. Nieman, Principles of instrumental analysis 5th edition. Saunders College Pub. Co.: Philadelphia, 1998.
    28. Molugaram, K. and G.S. Rao, Chapter 5 - Curve Fitting, in Statistical Techniques for Transportation Engineering, K. Molugaram and G.S. Rao, Editors. 2017, Butterworth-Heinemann. p. 281-292.
    29. https://www.hamamatsu.com/jp/en/product/optical-sensors/photodiodes/si-photodiodes/S1223-01.html. 2023.
    30. Young, J.C. and E.-S.M. Abdel-Aal, Chapter 12 - ANTHOCYANINS, in HEALTHGRAIN Methods, P.R. Shewry and J.L. Ward, Editors. 2009, AACC International Press. p. 141-165.
    31.行政院環保署, 水中葉綠素 a 檢測方法-丙酮萃取法/分光光度計分析法. 行政院公報, 2019.25(106)

    下載圖示
    QR CODE