簡易檢索 / 詳目顯示

研究生: 林辰謙
Chen-Chien Lin
論文名稱: 白蝦養殖投放飼料與生長曲線轉換之水下識別技術研究
Research on Underwater Recognition for White Shrimp Feeding Rate Relative to Growth Curve Prediction
指導教授: 苗志銘
Jr-Ming Miao
學位類別: 碩士
Master
系所名稱: 工學院 - 生物機電工程系所
Department of Biomechatronics Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 81
中文關鍵詞: 南美白對蝦水下影像增強影像處理水質監測系統YOLO機器學習飼料轉換率(FCR)
外文關鍵詞: Penaeus vannamei, underwater image enhancement, image processing, water quality monitoring system, YOLO, machine learning, eed conversion rate (FCR)
研究方法: 研究流程 、 系統架構 、 硬體設備 、 軟體平台 、 實驗規劃 、 Retinex影像增強 、 影像處理 、 LabelImg介紹 、 YOLO架構介紹 、 機器學習
DOI URL: http://doi.org/10.6346/NPUST202300087
相關次數: 點閱:54下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 隨著全球人口增長和食品需求的增加,白蝦養殖業已經成為全球重要的糧食供應源之一。然而,傳統的白蝦養殖方式存在著許多問題,如高成本、低效率、環境污染和動物福利問題。為了解決這些問題,本研究對智慧養殖白蝦進行了研究。其中以蝦的觀察為重,蝦是底棲動物,在觀察與決策方式完全以經驗法則做判斷,有經驗的漁民能透過水色、殘餌、泳姿、活動情況來做決策,這方面的經驗需要長時間的養成,並且在過人中容易驚擾到白蝦,嚴重甚至造成死亡。本研究主要以南美白對蝦為實驗對象,針對白蝦養殖過程分別在實驗場域與實際場域收取水質資料及水下照片,將水下照片經過MSRSR增強後得出殘餌量及白蝦體長,並且得知白蝦的生長變化曲線、體長體重的關聯以及飼料轉換率,並將其帶入機器學習,進而將養殖的經驗法達到一個可解釋的數據化。實驗結果得知,實際場域的水質變化主要與溫度有關;實驗場域投餵飼料時,pH與OPR會有所改變;白蝦體長推算體重的預測,其決定係數為0.889;白蝦體重增加的預測,其決定係數為0.988;YOLOv7有最高的精確度0.973,而YOLOv5有著最快的訓練速度;MSRCR影像增強後,精確度從0.931增加到0.959。

    With the growth of global population and the increase of food demand, white shrimp farming has become one of the important sources of food supply in the world. However, there are many problems in the traditional white shrimp farming methods, such as high cost, low efficiency, environmental pollution and animal welfare issues. In order to solve these problems, this study conducted a study on the intelligent farming of white shrimp. Among them, the observation of shrimp is the most important. Shrimp is a benthic animal. The observation and decision-making methods are completely judged by empirical rules. Experienced fishermen can make decisions based on water color, residual bait, swimming posture, and activity conditions. Experience in this area requires It takes a long time to grow, and it is easy to disturb the white shrimp when passing people, and even cause death in severe cases. This study mainly takes Penaeus vannamei as the experimental object, collects water quality data and underwater photos in the experimental field and actual field respectively for the white shrimp breeding process, and obtains the amount of residual bait and white shrimp body after the underwater photos are enhanced by MSRSR. Long, and know the growth curve of white shrimp, the relationship between body length and weight, and feed conversion rate, and bring it into machine learning, and then make the empirical method of farming into an interpretable data. The experimental results show that the water quality change in the actual field is mainly related to the temperature; the pH and OPR will change when the feed is fed in the experimental field; the prediction of the weight of the white shrimp body length is 0.889; The increased prediction has a coefficient of determination of 0.988; YOLOv7 has the highest accuracy of 0.973, while YOLOv5 has the fastest training speed; after MSRCR image enhancement, the accuracy increases from 0.931 to 0.959.

    摘要 I
    Abstract III
    謝誌 IV
    目錄 V
    表目錄 VIII
    圖目錄 IX
    1. 緒論 1
    1.1. 研究背景 1
    1.2. 研究動機及目的 1
    2. 文獻探討 4
    2.1. 水值感測技術 4
    2.2. 蝦子的觀測方法 5
    2.3. 智慧養殖 5
    3. 研究方法 7
    3.1. 研究流程圖 7
    3.2. 系統架構 10
    3.3. 硬體設備 11
    3.4. 軟體平台 12
    3.5. 實驗規劃 13
    3.6. Retinex影像增強 20
    3.7. 影像處理 24
    3.8. LabelImg介紹 31
    3.9. YOLO架構介紹 31
    3.10. 機器學習 42
    4. 結果與討論 44
    4.1. 水質感測分析 44
    4.2. 影像增強分析 47
    4.3. 飼料辨識分析 51
    4.4. 白蝦體長及體重分析 54
    4.5. 白蝦照片標籤及訓練 57
    4.6. YOLO準確指標 57
    4.7. 模型訓練結果 60
    4.8. 影像增強提升 62
    4.9. 白蝦長度辨識 63
    4.10. 飼料轉換率(Feed conversion rate, FCR) 68
    4.11. 機器學習預測結果 68
    4.12. 預警系統 70
    5. 結論 72
    5.1. 結論 72
    5.2. 未來展望 72
    參考文獻 74
    作者簡介 81

    [1] 鄭金華. 2017. 赴南非參加「2017世界水產學會」發表論文及參訪。
    [2] 漁業局. 2021. 臺灣行政院農業委員會水產局,水產品貿易
    [3] FAO. 2009. Penaeus vannamei. In Cultured aquatic species fact sheets. Text by Briggs, M. Edited and compiled by Valerio Crespi and Michael New.
    [4] Rome. 2020. The State of World Fisheries and Aquaculture 2020. Sustainability in action, THE STATE OF THE WORLD, p30
    [5] Barange, M. 2019. Fishery and aquaculture statistics. FAO yearbook. Fishery and Aquaculture Statistics= FAO Annuaire. Statistiques des Peches et de l'Aquaculture= FAO Anuario. Estadisticas de Pesca y Acuicultura, I-82.
    [6] Shinn, A. P., Pratoomyot, J., Griffiths, D., Trong, T. Q., Vu, N. T., Jiravanichpaisal, P., & Briggs, M. 2018. Asian shrimp production and the economic costs of disease. Asian Fish. Sci. S, 31, 29-58.
    [7] 陳君如. 2017. 白蝦106,水試所驗所特刊 第21號,第1頁
    [8] Reis, J., Novriadi, R., Swanepoel, A., Jingping, G., Rhodes, M., & Davis, D. A. 2020. Optimizing feed automation: improving timer-feeders and on demand systems in semi-intensive pond culture of shrimp Litopenaeus vannamei. Aquaculture, 519, 734759.
    [9] Silva, P. F., Medeiros, M. D. S., Silva, H. P. A., & Arruda, M. D. F. 2012. A study of feeding in the shrimp Farfantepenaeus subtilis indicates the value of species level behavioral data for optimizing culture management. Marine and Freshwater Behaviour and Physiology, 45(2), 121-134.
    [10] Engle, C. R., McNevin, A., Racine, P., Boyd, C. E., Paungkaew, D., Viriyatum, R., ... & Minh, H. N. 2017. Economics of sustainable intensification of aquaculture: evidence from shrimp farms in Vietnam and Thailand. Journal of the World Aquaculture society, 48(2), 227-239.
    [11] Ponce-Palafox, J., Martinez-Palacios, C. A., & Ross, L. G. 1997. The effects of salinity and temperature on the growth and survival rates of juvenile white shrimp, Penaeus vannamei, Boone, 1931. Aquaculture, 157(1-2), 107-115.
    [12] Wyban, J., Walsh, W. A., & Godin, D. M. 1995. Temperature effects on growth, feeding rate and feed conversion of the Pacific white shrimp (Penaeus vannamei). Aquaculture, 138(1-4), 267-279.
    [13] 胡曉娟. 2021. 全彩圖解南美白對蝦高效養殖與病害防治,化學工業出版社,p13~16
    [14] 王盼, 史文軍, 萬夕和, 沈輝, 沙士兵, 黎慧, ... & 吳旭幹. 2021. 低氧–複氧對脊尾白蝦呼吸代謝和抗氧化酶活力的影響. PROGRESS IN FISHERY SCIENCES.
    [15] Nguyen, T. V., Alfaro, A. C., Rodríguez, J., Bayot, B., & Sonnenholzner, S. 2022. Changes in metabolic profiling of whiteleg shrimp (Penaeus vannamei) under hypoxic stress. Journal of Invertebrate Pathology, 193, 107798.
    [16] Seidman, E. R., & Lawrence, A. L. 1985. Growth. Feed digestibility, and proximate body composition of juvenile Penaeus vannamei and Penaeus monodon grown at different dissolved oxygen levels. Journal of the World Mariculture Society, 16(1‐4), 333-346.
    [17] 王俞翔. 2016. 養殖漁業的水質檢測系統,碩士論文,國立臺灣師範大學,資訊工程研究所,臺北。
    [18] Gherardi, F., Aquiloni, L., & Tricarico, E. 2012. Behavioral plasticity, behavioral syndromes and animal personality in crustacean decapods: an imperfect map is better than no map. Current Zoology, 58(4), 567-579.
    [19] Moland, E., Carlson, S. M., Villegas‐Ríos, D., Ree Wiig, J., & Moland Olsen, E. 2019. Harvest selection on multiple traits in the wild revealed by aquatic animal telemetry. Ecology and evolution, 9(11), 6480-6491.
    [20] Zhao, S., Zhang, S., Liu, J., Wang, H., Zhu, J., Li, D., & Zhao, R. 2021. Application of machine learning in intelligent fish aquaculture: A review. Aquaculture, 540, 736724.
    [21] Salman, A., Siddiqui, S. A., Shafait, F., Mian, A., Shortis, M. R., Khurshid, K., ... & Schwanecke, U. 2020. Automatic fish detection in underwater videos by a deep neural network-based hybrid motion learning system. ICES Journal of Marine Science, 77(4), 1295-1307.
    [22] Hu, W. C., Wu, H. T., Zhang, Y. F., Zhang, S. H., & Lo, C. H. 2020. Shrimp recognition using ShrimpNet based on convolutional neural network. Journal of Ambient Intelligence and Humanized Computing, 1-8.
    [23] Qin, H., Li, X., Liang, J., Peng, Y., & Zhang, C. 2016. DeepFish: Accurate underwater live fish recognition with a deep architecture. Neurocomputing, 187, 49-58..
    [24] Li, X., Shang, M., Hao, J., & Yang, Z. 2016, April. Accelerating fish detection and recognition by sharing CNNs with objectness learning. In OCEANS 2016-Shanghai (pp. 1-5). IEEE.
    [25] Isa, I. S., Norzrin, N. N., Sulaiman, S. N., Hamzaid, N. A., & Maruzuki, M. I. F. 2020, October. CNN transfer learning of shrimp detection for underwater vision system. In 2020 1st International Conference on Information Technology, Advanced Mechanical and Electrical Engineering (ICITAMEE) (pp. 226-231). IEEE.
    [26] Sharan, S., Harsh, H., Kininmonth, S., & Mehta, U. 2021. Automated cnn based coral reef classification using image augmentation and deep learning. International Journal of Engineering Intelligent Systems, 29(4).
    [27] Koushik, C. V., Kamal, R. V., Tarun, C., Teja, K. D., & Manne, S. 2021. An Efficient Algorithm for Prawn Detection and Length Identification. In Proceedings of International Conference on Computational Intelligence and Data Engineering (pp. 457-467). Springer, Singapore.
    [28] 廖冠瑋. 2022. 利用深度學習與水下影像研發白蝦成長及行為模式的物聯網監測系統.碩士論文,國立臺灣大學,生物機電工程系所,台北
    [29] Lai, P. C., Lin, H. Y., Lin, J. Y., Hsu, H. C., Chu, Y. N., Liou, C. H., & Kuo, Y. F. 2022. Automatic measuring shrimp body length using cnn and an underwater imaging system. Biosystems Engineering, 221, 224-235.
    [30] Zhang, L., Zhou, X., Li, B., Zhang, H., & Duan, Q. 2022. Automatic shrimp counting method using local images and lightweight YOLOv4. Biosystems Engineering, 220, 39-54.
    [31] 谷立帥, 張鵬, 韋思學, & 鄭國偉. 2022. 融合 SKNet 與 YOLOv5 深度學習的養殖魚群檢測. JOURNAL OF DALIAN OCEAN UNIVERSITY.
    [32] Li, S., Li, C., Yang, Y., Zhang, Q., Wang, Y., & Guo, Z. 2022. Underwater scallop recognition algorithm using improved YOLOv5. Aquacultural Engineering, 98, 102273.
    [33] Hu, X., Liu, Y., Zhao, Z., Liu, J., Yang, X., Sun, C., ... & Zhou, C. 2021. Real-time detection of uneaten feed pellets in underwater images for aquaculture using an improved YOLO-V4 network. Computers and Electronics in Agriculture, 185, 106135.
    [34] Huang, J., Hung, C. C., Kuang, S. R., Chang, Y. N., Huang, K. Y., Tsai, C. R., & Feng, K. L. 2018, November. The prototype of a smart underwater surveillance system for shrimp farming. In 2018 IEEE International Conference on Advanced Manufacturing (ICAM) (pp. 177-180). IEEE.
    [35] Smith, D. M., Burford, M. A., Tabrett, S. J., Irvin, S. J., & Ward, L. 2002. The effect of feeding frequency on water quality and growth of the black tiger shrimp (Penaeus monodon). Aquaculture, 207(1-2), 125-136.
    [36] Petro, A. B., Sbert, C., & Morel, J. M. 2014. Multiscale retinex. Image Processing On Line, 71-88.
    [37] Parthasarathy, S., & Sankaran, P. 2012, February. An automated multi scale retinex with color restoration for image enhancement. In 2012 National Conference on Communications (NCC) (pp. 1-5). IEEE.
    [38] Ancuti, C. O., Ancuti, C., De Vleeschouwer, C., & Bekaert, P. 2017. Color balance and fusion for underwater image enhancement. IEEE Transactions on image processing, 27(1), 379-393.
    [39] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. 2016. You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788).
    [40] Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. 2020. Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934.
    [41] Wang, C. Y., Bochkovskiy, A., & Liao, H. Y. M. 2022. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv preprint arXiv:2207.02696
    [42] 趙欣慰. 2015. 水下成像與圖像增強及相關應用研究 ,碩士論文,訊息與電子工程系所,(Doctoral dissertation, 杭州: 浙江大學).
    [43] 唐松奇, 2019. 基於卷積神經網路的水下圖像增強與拼接方法研究, 碩士論文, 哈爾濱工程大學, 船舶工程學院
    [44] Liu, H., Xu, L., & Li, D. 2015, March. Detection and recognition of uneaten fish food pellets in aquaculture using image processing. In Sixth International Conference on Graphic and Image Processing (ICGIP 2014) (Vol. 9443, pp. 86-92). SPIE.
    [45] 穆春華. 2015. 循環水養殖系統中的殘餌識別與計數研究, 碩士論文, 太原科技大學, 電子資訊工程學院
    [46] Thakur, D. P., & Lin, C. K. 2003. Water quality and nutrient budget in closed shrimp (Penaeus monodon) culture systems. Aquacultural engineering, 27(3), 159-176
    [47] Radulovich, R., & Fuentes-Quesada, J. P. 2019. Shrimp (Litopenaeus vannamei) artisanal production in floating cages at sea and polyculture with oyster (Crassostrea gigas). Aquaculture, 512, 734354.
    [48] Putra, D. F., Muhammadar, A. A., Muhammad, N., Damora, A., Waliul, A., Abidin, M. Z., & Othman, N. 2018, December. Length-weight relationship and condition factor of white shrimp, Penaeus merguiensis in West Aceh waters, Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 216, No. 1, p. 012022). IOP Publishing.
    [49] Khademzadeh, O., & Haghi, M. 2017. Length-weight relationship and condition factor of white leg shrimp Litopenaeus vannamei (Boone, 1931) in culture systems of Choebdeh, West-South of Iran. International Journal of Fisheries and Aquatic Studies, 5(1), 298-301.
    [50] Mohamed, H. E. D., Fadl, A., Anas, O., Wageeh, Y., ElMasry, N., Nabil, A., & Atia, A. 2020. Msr-yolo: Method to enhance fish detection and tracking in fish farms. Procedia Computer Science, 170, 539-546.
    [51] Jeng, S. W., Chiu, C. K., & Gan, K. S. 2021. Computer Vision-Based Demersal Fish Length Measurement Technology. In Sensor Networks and Signal Processing (pp. 411-421). Springer, Singapore.
    [52] Aalimahmoudi, M., Reyshahri, A., Bavarsad, S. S., & Maniat, M. 2016. Effects of feeding frequency on growth, feed conversion ratio, survival rate and water quality of white leg shrimp (Litopenaeus vannamei, Boone, 1931). International Journal of Fisheries and Aquatic Studies, 4(3), 293-297.
    [53] 黃英哲、洪慶章、劉莉蓮、鄺獻榮、張雲南、鄭安茹、馬嘉鴻、黃冠渝、蘇有才、戈麗安、蔡昌儒、馮凱琳、趙柔筑、卓建興、尤凱逸、劉澤承、許家愷, 2020, 底棲性水產養殖之智慧化監測及管理技術-底棲性水產養殖之智慧化監測及管理技術, 科技部補助專題研究計畫,國立中山大學, 資訊工程學系(所)

    下載圖示
    QR CODE