簡易檢索 / 詳目顯示

研究生: 王柏燊
Wang, Bo-Shen
論文名稱: 影響蛇類頭鱗觸覺感受器數量及大小之生態及親緣因子探討
A study on the ecological and phylogenetic factors affecting the number and size of mechanoreceptors on cranial scales of snakes
指導教授: 蔡添順
Tsai, Tein-Shun
學位類別: 碩士
Master
系所名稱: 農學院 - 生物科技系
Department of Biological Science and Technology
畢業學年度: 106
語文別: 中文
論文頁數: 77
中文關鍵詞: 蛇蛻形質顯微測量食性棲地親緣迴歸分析
外文關鍵詞: Snake shed skin, morphometric trait, microscopic measurement, prey, habitat, phylogenetic regression modelling
DOI URL: http://doi.org/10.6346/THE.NPUST.BST.011.2018.D01
相關次數: 點閱:34下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 中文摘要
    學號:M10318028
    論文名稱:影響蛇類頭鱗觸覺感受器數量及大小之生態及親緣因子探討
    總頁數:76
    學校名稱:國立屏東科技大學 系別:生物科技系
    畢業時間及摘要別:一百零七學年度第二學期碩士論文摘要
    指導教授:蔡添順 研究生:王柏燊
    論文摘要內容:

    蛇蛻在乾燥狀態下容易保存,也利於進行一些光學上的研究,例如型態觀察、反光度;在不干擾蛇類的情況下是一種很好的研究材料。本研究探討129種蛇類頭部鱗片觸覺感受器形值(數目、平均直徑、總截面積)於不同親緣(蚺科、游蛇科、眼鏡蛇科、蟒科、蝰科、屋蛇科、水蛇科、鈍頭蛇科)、棲地(陸棲、穴居、水棲、半水棲、樹棲)、食性(外溫動物、內溫動物、無脊椎動物、魚)之差異性。本研究假設1)體型較大蛇類的感受器數目或大小可能較大;2)獵捕活躍程度較高的食物(如鼠類或鳥類)之蛇類,為了能在短時間正確判斷獵物方位,應有較多或較大的感受器;3)獵捕水生動物的(半)水棲蛇類對於感受獵物在水中震動而產生的波動需要較為靈敏,因此其感受器的數目或大小可能較大;4)穴居蛇種的感覺器可能較其他蛇種的感受器粗大;5)不同親緣的蛇類感受器形值亦應有差異。結果顯示同一物種的蛇之觸覺感受器的平均直徑與總截面積均會隨著體型大小而變大。主食為內溫動物的蛇種頭鱗觸覺感受器之數目、平均直徑、總截面積均大於主食為無脊椎動物者。穴居蛇種頭鱗觸覺感受器之數目、總截面積小於其他棲地類型者,而感受器之平均直徑於各棲地類型間無顯著差異性。蝰科蛇種頭鱗觸覺感受器之數目明顯較黃頷蛇、蟒蛇科者少;蝮蛇科觸覺感受器之平均直徑則較大。親緣迴歸模型分析的結果顯示預測觸覺感受器數目的較佳模式因子包含科別、棲息地、食性或鱗片面積。預測感受器平均直徑的較佳模式因子則只包含頭鱗面積,而不包含頭鱗大小以外的其他因子。

    關鍵字: 蛇蛻、形質、顯微測量、食性、棲地、親緣迴歸分析

    Abstract
    Student ID : M10318028
    Title : A study on the ecological and phylogenetic factors affecting the number and size of mechanoreceptors on cranial scales of snakes
    Total page : 76
    Name of institute : Department of Biological Science of Technology
    Graduate date : July, 2018
    Degree conferred : Master
    Name of student : Bo-Shen Wang
    Adviser : Dr. Tein-Shun Tsai
    Contents of abstract in this thesis :
    Snake shed skins can be preserved in a dry state and used in some optical studies, such as morphological observation and measurement of reflectivity or hydrophobicity, without disturbing the snakes. This study compared the morphometric traits (number, average diameter, total cross-sectional area) of mechanoreceptors on the cranial scales of 129 snake species for different families (Boidae, Colubridae, Elapidae, Pythonidae, Viperidae, Lamprophiidae, homalopsidae, Pareidae), habitats (terrestrial, fossorial, aquatic, semi-aquatic, arboreal), food habits (ectotherms, endotherms, invertebrates, fish). This study assumed that 1) the number or size of mechanoreceptors are larger in bigger snakes; 2) snakes hunting for highly active prey (such as rodents or birds) should have more, larger mechanoreceptors to correctly determine the prey orientation in a short time; 3) aquatic or semi-aquatic snakes hunting for aquatic prey may have more mechanoreceptors to facilitate detecting the fluctuations from the prey in water; 4) fossorial snakes may have thicker mechanoreceptors; 5) the morphometric traits of mechanoreceptors of different snake relatives should also be different. The results showed that the average diameter and total cross-sectional area of the mechanoreceptors in the same species varied with snake body size. The total number, average diameter, and total cross-sectional area of the mechanoreceptors on snakes feeding on endotherms were larger than those feeding on the invertebrates. The total number and cross-sectional area of the mechanoreceptors of fossorial snakes were smaller than those with other habitat types, while the average diameter of the receptors was not significantly
    different among habitat types. The number of mechanoreceptors in viperids was significantly lower than that in colubrids or pythons; the average diameter of the receptors of viperids was larger. The results of phylogenetic regression modelling showed that the preferred model factors for predicting the number of mechanoreceptors included family, habitat, food type or cranial scale area. The preferred model factors for predicting the average diameter of the receptors was only the cranial scale area, and did not include other factors.

    Key words:snake shed skin, morphometric trait, microscopic measurement, prey, habitat, phylogenetic regression modelling

    目錄
    第壹章 前言 ……………………………………………………………...………………1
    第貳章 材料與方法 …………………………………………………………..………… 6
    2.1. 蛇蛻材料 ………………………………………………………………………… 6
    2.2. 頭部鱗片玻片標本製作 ………………………………………………………… 6
    2.3.1. 感受器數目………………...…………………………………………………… 6
    2.3.2. 鱗片面積的量測 ………….…………………………………………………… 6
    2.3.3. 感受器底部直徑與截面積 .…………………………………………………… 7
    2.4. 新生蛇或幼蛇、亞成蛇、成蛇的觸覺感受器形值比較…………..…………… 7
    2.5. 統計分析 ………………………………………………………………………… 7
    2.5.1. 各因子的分群……………… ……………………………………………………7
    2.5.2. 單因子變異數分析………………………………………………………………8
    2.5.3. 親緣迴歸模型分析………………………………………………………………8
    第參章 結果 …………………………………………………………………………… 10
    3.1. 同種蛇類體型大小與觸覺感受器形值之相關分析……………………………10
    3.1.1. 眼鏡蛇…………………………………………………………………………10
    3.1.2. 黑眉錦蛇………………………………………………………………………10
    3.1.3. 玉米蛇…………………………………………………………………………10
    3.1.4. 紅尾蚺…………………………………………………………………………10
    3.1.5. 菊池氏龜殼花…………………………………………………………………10
    3.1.6. 鎖鏈蛇…………………………………………………………………………10
    3.1.7. 地毯蟒…………………………………………………………………………11
    3.2. 不同食性、棲息地、科別的蛇類之分類………………………………………11
    3.3. 不同食性、棲息地、科別的蛇類頭鱗感受器形值之ANOVA分析…………11
    3.4. 親緣迴歸分析模型………………………………………………………………12
    第肆章 討論 …………………………………………………………………………… 13
    第伍章 參考文獻 ……………………………………………………………………… 17
    作者簡介……………………………………………………………………………………76
    表目錄
    表一、本研究所使用的蛇類物種、學名、俗名、樣本數、採集者、科別、棲息地、食性比較表……………………………………………………………………………………22
    表一(續) …………………………………………………………………………………23
    表一(續) …………………………………………………………………………………24
    表一(續) …………………………………………………………………………………25
    表一(續) …………………………………………………………………………………26
    表一(續) …………………………………………………………………………………27
    表一(續) …………………………………………………………………………………28
    表一(續) …………………………………………………………………………………29
    表一(續) …………………………………………………………………………………30
    表一(續) …………………………………………………………………………………31
    表一(續) …………………………………………………………………………………32
    表一(續) …………………………………………………………………………………33
    表一(續) …………………………………………………………………………………34
    表一(續) …………………………………………………………………………………35
    表一(續) …………………………………………………………………………………36
    表一(續) …………………………………………………………………………………37
    表一(續) …………………………………………………………………………………38
    表一(續) …………………………………………………………………………………39
    表一(續) …………………………………………………………………………………40
    表二、預測上顎感受器數目的迴歸因子模型比較……………………………………41
    表三、預測下顎感受器數目的迴歸因子模型比較……………………………………42
    表四、預測上顎平均直徑的迴歸因子模型比較………………………………………43
    表五、預測下顎平均直徑的迴歸因子模型比較………………………………………44
    表六、預測上顎感受器總截面積的迴歸因子模型比較……………………………… 45
    表七、預測下顎感受器總截面積的迴歸因子模型比較……………………………… 46

    圖目錄
    圖1、頭部具大鱗片之一般蛇類頭鱗名稱與分布………………………………………… 47
    圖2、蛇蛻標本製備流程……………………………………………………………………48
    圖3、本研究所有物種的親緣關係樹支狀圖……………………………………………… 49
    圖4、眼鏡蛇之體型大小與觸覺感受器形值相關圖………………………………………50
    圖5、黑眉錦蛇之體型大小與觸覺感受器形值相關圖……………………………………51
    圖6、玉米蛇之體型大小與觸覺感受器形值相關圖………………………………………52
    圖7、紅尾蚺之體型大小與觸覺感受器形值相關圖………………………………………53
    圖8、菊池氏龜殼花之體型大小與觸覺感受器形值相關圖………………………………54
    圖9、鎖鏈蛇之體型大小與觸覺感受器形值相關圖………………………………………55
    圖10、地毯蟒之體型大小與觸覺感受器形值相關圖………………………………………56
    圖11、不同食性蛇類的上顎觸覺感受器數目之比較圖…………………….…………… 57
    圖12、不同食性蛇類的下顎觸覺感受器數目之比較圖……………………….………… 58
    圖13、不同食性蛇類的上顎觸覺感受器平均直徑之比較圖………………….………… 59
    圖14、不同食性蛇類的下顎觸覺感受器平均直徑之比較圖……………………….…… 60
    圖15、不同食性蛇類的上顎觸覺感受器總截面積之比較圖……………...……………… 61
    圖16、不同食性蛇類的下顎觸覺感受器總截面積之比較圖………………………………62
    圖17、不同棲地蛇類的上顎觸覺感受器的數目之比較圖…………………………………63
    圖18、不同棲地蛇類的下顎觸覺感受器的數目之比較圖…………...…………………… 64
    圖19、不同棲地蛇類的上顎觸覺感受器平均直徑之比較圖………………………..…… 65
    圖20、不同棲地蛇類的下顎觸覺感受器平均直徑之比較圖…………………….……… 66
    圖21、不同棲地蛇類的上顎觸覺感受器的總截面積之比較圖……………….…….……67
    圖22、不同棲地蛇類的下顎觸覺感受器的總截面積之比較圖………………….……… 68
    圖23、不同科別蛇類的上顎觸覺感受器數目之比較圖………………………….……… 69
    圖24、不同科別蛇類的下顎觸覺感受器數目之比較圖……………………….………… 70
    圖25、不同食性蛇類的上顎觸覺感受器平均直徑之比較圖………………….………… 71
    圖26、不同食性蛇類的下顎觸覺感受器平均直徑之比較圖……………….…………… 72

    圖27、不同食性蛇類的上顎觸覺感受器總截面積之比較圖…………………………… 73
    圖28、不同食性蛇類的下顎觸覺感受器總截面積之比較圖…………………………… 74

    毛壽先、殷鳳儀(1980)。台灣常見陸地毒蛇簡介。臺灣省立博物館。3pp.
    石浦、張震 (1981)。武夷山四種毒蛇的食性分析。武夷山科學第一卷。146pp.
    石浦、鄭維融(1985)。武夷山區蛇類的食性研究。兩棲爬行動物學報4: 149-152。
    呂光洋、陳世煌和 陳賜隆(1989)。臺灣爬蟲類動-陸棲蛇類。148pp.
    李文傑、呂光洋(1996)。台灣地區蛇類食性的初探。師大生物學報31: 119-124。
    林郁卿(2013)。蛇類頭部不同部位感受器數量與密度之探討。國立屏東科技大學實務專題期末書面報告。
    黃美華(1987)。浙江動物誌。浙江科學技術出版社。306pp.
    張鈞睿、杜銘章(2007)。台灣三種闊尾海蛇地理分佈及陸棲程度與溫度耐受及偏好之關係。國立臺灣師範大學生命科學系碩士論文。
    蔡添順、戴子堯、吳忠信、毛俊傑(2011)。從生態,神經生理及奈米科學角度探討蛇類鱗片多樣化的型態與功能。在行政院國家科學委會補助專題研究計畫成果報告。
    Abdel-Aal, H.A., Mansroi, M. El., Mezghani, S. 2010. Multi-scale investigation of surface topography of ball python (Python regius) shed skin in comparison to human skin. Tribology Letters 37: 517-527.
    Ananjeva, N.B., Dilmuchamedov, M.E., Matveyeva, T.N. 1991. The skin sense organs of some iguanian lizards. Journal of Herpetology 25: 186-199.
    Aximoff, I., Queiroz, F., Freitas, L. 2016. Boa constrictor (Boa constrictor) diet. Herpetological Review 47: 472-473
    Brischoux, F., Gartner, G.E.A., Garland, T. Jr., Bonnet, X. 2011. Is aquatic life correlated with an increased hematocrit in snakes? Public Library of Science One 6. e17077. https://doi.org/10.1371/journal.pone.0017077
    Catania, K.C., Leitch, D.B., Gauthier, D. 2010. Function of the appendages in tentacled snakes (Erpeton tentaculatus). The Journal of Experimental Biology 213: 359-367.
    Crump, M. 2015. Eye of Newt and Toe of Frog, Adder’s Fork and Lizard’s Leg. University of Chicago Press. 304pp.
    George, A.B. 1890. The fauna of britis India Ceylon and Burma, including the whole of the indo-chinese sub-region. 29pp.
    Gray, B.S. 2009. Estimating snout to vent length from data acquired from the shed skins of the northern brown snake, Storeria dekayi dekayi. Journal of Kansas Herpetology 32:17-19.
    Gray, B.S. 2012. Guide to the Identification of the Shed Skins of the Snakes of Canada, Printed in the United States of America. 110pp.
    Gibbons, J.W., Scott, D.E., Ryan, T.J., Buhlmann, K.A., Tuberville, T.D., Metts, B. S., Greene, J.L., Mills, T., Leiden, Y., Poppy, S., Winne, C.T., 2000. The global decline of reptiles, déjà vu amphibians. Bioscience 50: 653-666.
    Glodek, G.S., Voris, H.K., 1982. Marine snake diet: prey composition, diversity and overlap. Copeia 1982. 661-666.
    Greene, H. W. 1997. Snakes: the Evolution of Mystery in Nature. University of California Press, California. 365pp.
    Harvey, M.B., Gutberlet, R.L. Jr. 2000. A phylogenetic analysis of the tropidurine lizards (Squamata: Tropiduridae), including new characters of squamation and micrstructure. Zoological Journal of the Linnean Society 128: 189-233.
    Hopkins, W.A., Roe, J.H., Snodgrass, J.W., Staub, B.P., Jackson, B.P., Condon, J.D. 2002. Effects of chronic dietary exposure to trace elements on banded water snakes (Nerodia fasciata). Environmental Toxicology and Chemistry 21: 906-913.
    Jackson, M.K. 1977. Histology and distribution of cutaneous touch corpuscles in some leptotyphlopid and colubrid snakes (Reptilia, Serpentes). Journal of Herpetology 11: 7-15.
    Jackson, M.K., Doetsch, G.S. 1977. Functional properties of nerve fibers innervating cutaneous corpuscles within cephalic skin of the Texas rat snake. Experimental Neurology 56: 63-77.
    Jackson, M.K., Sharawy, M. 1980. Scanning electron microscopy and distribution of specialized mechanoreceptors in the Texas rat snakes, Elaphe obsolete lindheimeri (Baird and Girard). Journal of Morphology 163: 59-67.
    Jones, D.E., Gogal, R. M. Jr., Nader, P. B., Holladay, S. D. 2005. Organochlorine detection in the shed skins of snakes. Ecotoxicology and Environmental Safety 60: 282-287.
    Kuntz, R. E. 1963. Snake of Taiwan. Quart J Taiwan Mus 16: 80pp.
    Mukherjee, S., Dasgupta, S.C., Gomes, A. 2013. Effect of Naja naja Laurenti shed skin extract on estrous cycle, hormone - cytokine profiles, histopathology of ovary and uterus of Swiss albino mice. Indian Journal of Experimental Biology 51: 235-240.
    Lev, E. 2003. Traditional healing with animals (zootherapy): Medieval to present-day Levantine practice. Journal of Ethnopharmacology 85: 107-118.
    Povel, D., Van der Kooij, J. 1996. Scale sensillae of the file snake (Serpentes: Arochordidae) and some other aquatic and burrowing snakes. Netherlands Journal of Zoology 47: 443-456.
    Pyron, R.A., Burbrink, F.T., John, Wiens, J.J. 2013. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology 13: 93. https://doi.org/10.1186/1471-2148-13-93
    Rainwater, T.R., Reynolds, K.D., Cañas, J.E., Cobb, G.P., Anderson, T.A., McMurry, S.T., Smith, P.N. 2005. Organochlorine pesticides and mercury in cottonmouths (Agkistrodon piscivorus) form northeastern Texas, USA. Environmental Toxicology and Chemistry 24: 665-673.
    Soares, D. 2002. Neurology: An ancient sensory organ in crocodilians. Nature 417: 241-242.
    Stewart, G.R., Daniel, R.S. 1972. Scales of the lizard Gekko gecko: surface structure examined with the scanning electron microscope. Copeia 1972: 252-257.
    Stovall, R.H. 1985. Cephalic scale pits observed on the lizard, Uta stansburiana: light and scanning electron microscopy. Journal of Herpetology 19: 425-428.
    Su, Y., Fong, S. C., Tu, M.C. 2005. Food Habits of the Sea Snake, Laticauda semifasciata. Zoological Studies 44: 403-408.
    Shine, R., Cogger, H.G., Reed, R. R., Shetty, S., Bonnet, X. 2003. Aquatic and terrestrial locomotor speeds of amphibious sea-snakes (Serpentes, Laticaudidae). The Zoological Society of London 259: 261-268.
    Shetty, S. 2000. Behavioural ecology of the yellow-lipped sea krait, Laticauda colubrina, in the Fiji Islands. School of Biological Sciences University of Sydney. 130pp.
    Tsai, T.S., Mao, J.J. 2017. Species identification of shed snake skins in Taiwan and adjacent islands. Zoological Studies 56: 38. doi:10.6620/ZS.2017.56-38
    Uetz, P., Freed, P., Hošek, J. (eds.) 2018. The Reptile Database. http://www.reptile-database.org. Accessed 28 Feb. 2018
    Voris, H.K., Voris, H.H. 1983. Feeding strategies in marine snakes: an analysis of evolutionary, morphological, behavioral and ecological relationships. American Zoologist 23: 411-425.
    Young, B.A. 1990. Is there a direct link between the ophidian tongue and Jacobson's organ? Amphibia-Reptilia 11: 263-276.

    下載圖示
    QR CODE