簡易檢索 / 詳目顯示

研究生: 魏紹倫
Wei, Shao-Lun
論文名稱: 逸散性揚塵微粒於物料堆置區之防制研究
Study of the Control Devices for Fugitive Suspended Particulate Matters in the Material Stacking Area
指導教授: 林傑
Lin, Chieh
張國慶
Chang, Guo-Qing
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程與科學系所
Department of Environmental Science and Engineering
論文出版年: 107
畢業學年度: 106
語文別: 中文
論文頁數: 80
中文關鍵詞: 料堆堆置場防制設施總懸浮微粒(TSP)落塵PM2.5
外文關鍵詞: Material stacking area, Control devices, Total Suspended Particulate(TSP), Dust fall, PM2.5
DOI URL: http://doi.org/10.6346/THE.NPUST.ESE.024.2018.E02
相關次數: 點閱:95下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 鋼鐵業原物料堆置為重要的逸散來源之一,原物料在取(卸)料的過程中,容易受到擾動而產生揚塵逸散,這些微粒逸散不僅會影響廠區內的空氣品質,也影響附近居民之健康,故應該設置有效之防制設施以抑制揚塵逸散。為了解物料堆置區內之防制設施是否有效抑制揚塵,以及堆置區周界PM2.5之化學成分,本研究於鋼鐵廠內料堆堆置區內以高量採樣器及落塵桶採集TSP及落塵,以驗證整個廠區之防制效率,最後利用PQ200及高量採樣器採集PM2.5及TSP,以了解懸浮微粒之物理及化學成分分析,項目包含TSP及PM2.5質量濃度、落塵量、PM2.5之水溶性離子成分及金屬元素成分。
    本研究結果顯示,料堆堆置場內物料為鐵礦TSP濃度範圍為53~75 µg/Nm3,物料為煤礦TSP濃度範圍則為244~347 µg/Nm3 煤礦的逸散程度比鐵礦嚴重,故選擇煤礦作為驗證防制設施之物料;濕季時在堆置場內以使用灑水設施下,上下風處相對削減率(56 %)為最佳;乾季時則以防塵網+化學穩定劑下,上下風處相對削減率(82 %)為最佳。防塵網驗證結果顯示,1小時TSP防塵網完工前後平均削減率以 90 %為最佳,內外側測點平均濃度分別為 1390及134±3 µg/Nm3;24小時TSP防塵網整體完工前防塵網平均削減率,夏季和秋季皆為60 %,完工後防塵網內外側測點平均削減率,冬季和春季分別為50 %及89 %,平均削減率以春季時(89 %)為最高,當防塵網內側濃度越高時,越能凸顯出防塵網之防制效率;完工前平均削減量為24.58 ton/km2/month,完工後平均削減量為33.44 ton/km2/month,雖然完工後平均削減率略低於完工前,但平均削減量高於完工前8.86 ton/km2/month。料堆堆置場周界兩次採樣PM2.5及TSP濃度分別為31.10±0.63 μg/m3、178±45 μg/m3及31.55±2.42 μg/m3、293±128 μg/m3,PM2.5/TSP比值為0.14~0.27及0.07~0.22,料堆堆置場周界PM2.5化學成分分析中,水溶性離子主要皆以SO42-、NO3-、NH4+三種衍生性氣膠為主,佔水溶性離子比例為85~90 %及90~95 %;金屬元素皆以Na、K、Mn、Fe、Zn及Si為主,其微粒上之K可能來來自石料,而Fe可能來自煤礦和鐵礦。

    Material stacking is one of the important fugitive sources in steel industry. In the process of taking (unloading) materials, the materials are easily disturbed to generate fugitive dust. This fugitive suspended particulate matters will not only deteriorated the air quality in the plant area, but also affected the health of nearby residents. Therefore, should be set up control devices to control suspended particulate matters emissions.In order to understand whether the control devices in the material stacking area effectively control suspended particulate matters emissions, and the chemical composition of PM2.5 around the material stacking area. This study selected a steel plant in Taiwan. Under various control devices and collected TSP with high-volume samplers in the material stacking area. And collected TSP and dust fall, in order to verify the control efficiency in the whole plant area. Finally, collected TSP and PM2.5 with high-volume samplers and PQ200 to understand the physicochemical properties of PM, including mass concentration, dustfall concentration, water-soluble ionic species, and metallic elements, were further analyzed.
    The results of this study indicate that the material in the stacking area is 50-75 μg/Nm3 of TSP in iron ore, and 244-347 μg/Nm3 in coal of TSP. The coal has a greater degree of fugitive than iron ore. Therefore, the coal selected as the material to calculate the control efficiency of various control devices. Under the control devices in the material stacking area:In the wet season, the relative reduction rate (56%) is best when using the water-sprinkling; in the dry season, the relative reduction rate (82%) is the best when useing the dustproof grid + chemical stabilizers.
    The results of 1 hour TSP verificationt control efficiency of the dustproof grid showed that the average reduction rate of 90 % is the best, and the average concentration of the inner and outer points were 1390 and 134±3 μg/Nm3 . The average reduction rate of the dustproof grid before the completion of the 24-hour TSP dustproof grid was 60% in summer and autumn. The average reduction rate of the dustproof grid after completion were 50% and 89% in winter and spring, and the average reduction rate was the best in spring. When the concentration inside the dustproof grid was higher, the prevention efficiency of the dustproof can be highlighted. The average reduction before completion was 24.58 ton/km2/month, the average reduction after completion was 33.44 ton/km2/month. In two samplings of around the material stacking area, fist sampling PM2.5 and TSP concentrations were 31.10±0.63 μg/m3 and 178±45 μg/m3, the second sampling were 31.55±2.42 μg/m3 and 293±128 μg/m3, and the PM2.5/TSP ratio is 0.14~0.27 and 0.07~0.22 Chemical analysis of PM2.5 results showed that the most abundant water-soluble ionic species were secondary aerosols (SO42-, NO3-, and NH4+), accounting for 85-90 % and 90-95 % of the total water-soluble ions. Na, K, Mn, Fe, Zn and Si were the major metallic elements of this study. The source of K pollution may come from stone, and Fe may come from coal mines and iron ore.

    摘要 I
    Abstract III
    謝 誌 VI
    目錄 VII
    表目錄 X
    圖目錄 XII
    第1章 前言 1
    1.1 研究緣起 1
    1.2 研究目的 2
    第2章 文獻回顧 3
    2.1 懸浮微粒之定義及來源 3
    2.2 逸散性粒狀物排放特性 5
    2.3 逸散性粒狀物防制設施 8
    2.3.1 阻隔牆與防塵網 8
    2.3.2 灑水設備 9
    2.3.3 化學穩定劑 10
    2.4 懸浮微粒上之化學組成 11
    2.4.1 懸浮微粒上之水溶性離子特性 12
    2.4.2 懸浮微粒上之金屬成分特性 14
    2.5 懸浮微粒之擴散關係 16
    2.5.1 高斯擴散模式 18
    第3章 材料與方法 22
    3.1 採樣規劃 22
    3.1.1 採樣點位與頻率 22
    3.1.2 防制設施之規格 22
    3.2 採樣設備與方法 28
    3.2.1高量空氣採樣器 28
    3.2.2 落塵桶 30
    3.2.3 PQ200 31
    3.2.4 風速風向儀 32
    3.3 PM2.5微粒成分分析 33
    3.3.1 質量濃度分析 33
    3.3.2 PM2.5上水溶性離子成分分析 33
    3.3.3 PM2.5上金屬元素分析 34
    3.4 防制效率及削減率之計算 36
    第4章 結果與討論 37
    4.1 堆置區內之TSP濃度 37
    4.2 防塵網內外側測點濃度 48
    4.3 堆置場周界之濃度 59
    4.4 風速與風向 68
    第5章 結論與建議 73
    5.1 結論 73
    5.2 建議 74
    參考文獻 75
    作者簡介 80

    行政院環保署,鋼鐵冶鍊逸散性粒狀污染物防制技術手冊。
    行政院環保署,2011,「固定污染源逸散性粒狀污染物空氣污染防制設施管理辦法」。
    王至中,2017,台灣西部細懸浮微粒(PM2.5)濃度分布與趨勢之探討,碩士論文,國立中興大學,環境工程學系,台中。
    呂珂盈,2017,臺灣南部大氣氣膠特性與污染源主成份之研究,碩士論文,國立臺灣海洋大學,海洋環境資訊系,基隆。
    林育存,2017,高雄海岸地區大氣懸浮微粒水溶性離子分析研究,碩士論文,國立中山大學,海洋環境工程學系,高雄。
    王偉志,2017,半導體廠園區大氣粗細微粒水溶性離子特性,碩士論文,國立屏東科技大學,環境工程與科學系,屏東。
    林彥儒,2017,南臺灣半導體廠園區大氣細懸浮微粒金屬特性,碩士論文,國立屏東科技大學,環境工程與科學系,屏東。
    姜彧波,2017,巴士海峽、台灣海峽及南海交界區域PM2.5晝夜濃度變化及化學成份特徵分析,碩士論文,國立中山大學,高雄。
    卓志成,2016,花蓮地區營建工地微粒質量濃度與水溶性離子成分特性,碩士論文,大漢技術學院,花蓮。
    藍欣辛,2014,泰國東安康山PM2.5中水溶性離子化學特性分析,碩士論文,國立成功大學,環境醫學系,台南。
    中國鋼鐵股份有限公司,2014,「3D光學雷達應用於料堆防塵柵網抑塵效率評估」,主持人:周煥銘。
    吳家安,2013,高雄地區大氣中細懸浮微粒之監測分析及管制策略,碩士論文,國立中山大學,環境工程學系,高雄。
    江瑋哲,2013,大氣中細懸浮微粒化學組成及來源貢獻分析研究,碩士論文,朝陽科技大學,台中。
    廖嘉政,2012,剛鐵工廠周界及鄰近敏感點之懸浮微粒物化特性分析及污染源解析,碩士論文,國立中山大學,高雄。
    陳郁蕙,2011,高濃度大氣懸浮微粒化學組成特徵分析及其來源推估之研究,碩士論文,國立高雄第一科技大學,高雄。
    陳瑾,2006,環境中懸浮微粒採樣方法比較及其水溶性離子之特性分析研究-以斗六及崙背站為例,碩士論文,國立雲林科技大學,雲林。
    饒瑞曄,2005,中台灣港灣及交通區大氣懸浮微粒離子濃度與來源鑑定之研究,碩士論文,弘光科技大學,台中。
    任漢傑,2008,鋼鐵業原物料堆置場逸散性懸浮微粒採樣及指紋資料建立,碩士論文,大仁科技大學,屏東。
    國科會,2000,「逸散粒狀物之噴灑水與防塵藥劑施用效益之研究」,主持人:章裕民,NSC-89-EPA-Z-027-001。
    國科會,1998,「營建裸露地逸散粒散物污染防治技術及其管制規範之研究」,主持人:章裕民,NSC-87-EPA-P027-001。
    蔣本基,張子琦,1996,懸浮微粒污染源與氣象因子相關性研究,第十三屆空氣污染技術控制研討會論文專輯,第556~557頁,臺北。
    Qiusheng He,Yulong Yan, Lili Guo, Yanli Zhang, Guixiang Zhang, Xinming Wang(2017)Characterization and source analysis of water-soluble inorganic ionic species in PM2.5 in Taiyuan city, China, Volume 184, 1 February 2017, Pages 48-55.
    Tong Zhao, Lingxiao Yang, Weida Yan, Junmei Zhang, Wei Lu, Yumeng Yang, Jianmin Chen, Wenxing Wang(2017)Chemical characteristics of PM1/PM2.5 and influence on visual range at the summit of Mount Tai, North China, Volume 575, 1 January 2017, Pages 458-466.
    Saliou Mbengue, Laurent Y. Alleman, Pascal Flament(2017)Metal-bearing fine particle sources in a coastal industrialized environment, Volume 183, 1 January 2017, Pages 202-211.
    Naga Chaitanya Kavuri, Kakoli Karar, Paul Nagendra Roy(2015)TSP aerosol source apportionment in the urban region of the Indian steel city, Rourkela.
    S.M. Almeida, J. Lage, B. Fernández, S. Garcia, M.A. Reis, P.C. Chaves(2015) Chemical characterization of atmospheric particles and source apportionment in the vicinity of a steelmaking industry, Science of the Total Environment 521–522(2015)411–420.
    Nassima Oucher, Rabah Kerbachi, Anissa Ghezloun, Hamza Merabet(2015) Magnitude of Air Pollution by Heavy Metals Associated with Aerosols Particles in Algiers, Volume 74, August 2015, Pages 51-58.
    L. Chen, T.T. Han, T. Li, et al.,(2012)Estimation of the effect derived from wind erosion of soil and dust emission in Tianjin suburbs on the central district based on WEPS model, Chin. J., Science of the Total Environment 33(7)2197–2203.
    M. R. Perrone, A. Piazzalunga, M. Prato, I. Carofalo(2011)Composition of fine and coarse particles in a coastal site of the central Mediterranean: Carbonaceous species contributions, Volume 45, Issue 39, December 2011, Pages 7470-7477.
    Nguyen Thi Hieu, Byeong-Kyu Lee(2010)Characteristics of particulate matter and metals in the ambient air from a residential area in the largest industrial city in Korea, Volume 98, Issues 2–4, November–December 2010, Pages 526-537.
    BartWojas, Catherine Almquist(2007)Mass concentrations and metals speciation of PM2.5, PM10, and total suspended solids in Oxford, Ohio and comparison with those from metropolitan sites in the Greater Cincinnati region, Volume 41, Issue 39, December 2007, Pages 9064-9078.
    Weisheng Yue, Xiaolin Li, Jiangfeng Liu, Yan Li, Xiaohan Yu, Biao Deng, Tianmin Wan, Guilin Zhang, Yuying Huang, Wei He, Wei Hua, Longyi Shao, Weijun Li, Shushen Yang(2006)Characterization of PM2.5 in the ambient air of Shanghai city by analyzing individual particles, Volume 368, Issues 2–3, 15 September 2006, Pages 916-925.
    Peter Wåhlin, Ruwim Berkowicz, Finn Palmgren(2006)Characterisation of traffic-generated particulate matter in Copenhagen, Volume 40, Issue 12, April 2006, Pages 2151-2159.
    Antonio J. Fernández Espinosa, Miguel Ternero Rodrı́guez, Francisco J Barragán de la Rosa, Juan C Jiménez Sánchez(2001)Size distribution of metals in urban aerosols in Seville(Spain), Volume 35, Issue 14, May 2001, Pages 2595-2601.
    F. Laden, L.M. Noas, D.W. Dockery, Joel Schwartz(2000)Association of fine particulate matter from different sources with daily mortality in six U.S. cities, Environ Health Perspect, 108(2000), pp. 941-947.
    Bagnold, R. A.,(1998)The physics of Blown Sand and Desert Dunes, Methuen and Co., J. Chem. Eng. Jpn. 13:143-147.
    I. Colbeck(2008)Environmental Chemistry of Aerosols Blackwell Publishing.
    A. Lakhani, K.M. Kumari Carbonaceous aerosols: Spatial distribution and sources H. Knudsen, N. Ramussen(Eds.)(2012)Particulate Matter: Sources, Emission Rates and Health Effects, Nova Science Publishers, Inc. pp. 253-313.
    Ohta, S., and Okita, T., 1990, A chemical characterization of atmospheric aerosol in Sapporo, Atmospheric Environment, 24A, 4, 815-822.
    Lin, J.J., 2002, Characterization of water-soluble ion species in urban particles, Environment International, 28, 55-61.
    Pacyna, J. M.,(1986)Atmopheric trace elements from natural and anthropogenic sources, in Nriagu, J.O. and Davidson, C.I. eds.: Toxic Metals in the Atmosphere, Wiley, New York.
    Arimoto, R., Duce, R.A., Savoie, D.L., Prospero, J.M., Talbot, R., Cullen, J.D., Tomza, U., Lewis, N.F., and Ray, B.J.,(1996)Relationships among aerosol constituents from Asia and the North Pacific during PEM-West, Geophysical Research, 101(D1), 2011-2023, 1996.
    Tang, I.N., Munkelwitz, H.R., and Davis, J.G.,(1977)"Aerosols growth studies:preparation and growth measurements of monodisperse salt aerosols, " J. of Aerosols Sci., 8, 149-159.

    下載圖示
    QR CODE