簡易檢索 / 詳目顯示

研究生: 蔡依蓉
Cai, Yi-Rong
論文名稱: 不同加工條件製成之蘿蔔乾生物活性成分分析與其對抗腫瘤及抗發炎細胞之影響
Analysis of biologically active ingredient from different processing conditions of dried radish on anti-tumor and anti-inflammatory in vitro
指導教授: 邱秋霞
Chiu, Chiu-Hsia
黃卓治
Huang, Tzou-Chi
林麗雲
Lin, Li-Yun
學位類別: 碩士
Master
系所名稱: 農學院 - 食品科學系所
Department of Food Science
畢業學年度: 107
語文別: 中文
論文頁數: 138
中文關鍵詞: 蘿蔔抗氧化能力揮發性化合物抗發炎抗腫瘤
外文關鍵詞: Radish, Antioxidant Capacity, Volatile, Anti-inflammatory, Anti-tumor
DOI URL: http://doi.org/10.6346/THE.NPUST.FS.003.2019.E11
相關次數: 點閱:82下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 蘿蔔 (Raphanus sativus L.)為十字花科蘿蔔屬,屬於深根性農作物。在台灣傳統文化中,取新鮮蘿蔔以食鹽醃漬後,再日曬製成具有獨特色澤及風味之蘿蔔乾,主要目的為長時間儲藏及有效防止腐敗。本研究擬探討其機能性成分。(1)將新鮮白蘿蔔表面洗淨皮肉分離,兩個部位分別進行生物活性成分分析與細胞體外試驗;(2)將新鮮白蘿蔔表面洗淨切片直接進行熱風乾燥,分別為50℃、70℃及90℃;(3)將新鮮白蘿蔔表面洗淨,整顆蘿蔔以食鹽醃漬,使其脫水,醃漬約二至三天使白蘿蔔水分充分脫水,而後切片進行熱風乾燥,分別以50℃、70℃及90℃;(4)新鮮白蘿蔔表面洗淨,整顆蘿蔔以食鹽醃漬,使其脫水,醃漬約二至三天使白蘿蔔水分充分脫水,進行第一次日曬,而後切片在第二次鹽醃脫水,再進行二次日曬乾燥。熱風乾燥最終判斷決定於水活性<0.6,熱風乾燥部分大約為期2-3天,日曬需約一個月。另外,以沙鹿公有市場購入之3-4年市售老菜脯作為比較。以純水、乙醇、甲醇及乙酸乙酯萃取蘿蔔乾,探討其生物活性成分之變化及巨噬細胞、黑色素瘤細胞等體外試驗。
    本實驗結果顯示,三種不同加工方式蘿蔔乾之水活性介於0.4-0.6,使其易於保存。萃取率最高以甲醇>純水>乙醇>乙酸乙酯,其中四種溶劑萃取率皆以SH50為最高,分別甲醇為41.92%、純水為33.55%、乙醇為24.61%、乙酸乙酯為8.29%。總多酚類及總黃酮類含量皆以甲醇萃取最佳,其中總多酚含量以甲醇萃取H70最高為43.71 μg GAE/g;總類黃酮含量以甲醇萃取H90最高為1.60 μg QE/g。另外,抗氧化能力方面,四種溶劑萃取物皆具有良好之抗DPPH及ABTS清除自由基之能力,不論以純水、甲醇或乙醇萃取蘿蔔乾之清除率皆高於新鮮蘿蔔之清除率,其中DPPH之EC50以甲醇萃取H90為20.45 μg TE/g最高;ABTS之EC50以水溶液萃取H70為44.80 μg TE/g最高。蘿蔔硫素部份,僅在新鮮蘿蔔肉中檢測出 8.28 µg/g,因蘿蔔硫素為不穩定中間產物,會因儲藏時間愈久含量逐漸減少。呈味部分,最具貢獻力者為5’-GMP (鳥苷酸)及5’-IMP (肌酐酸),其中以H70在呈味上最為強烈,兩者核苷酸含量分別為24.42 μg/g及25.07 μg/g,表示熱風乾燥有助於增加呈味強度。脂肪及脂肪酸部份,老菜脯具有較高脂肪含量為6.14%,脂肪酸部份,以老菜脯有較高總脂肪酸含量1.90 mg/g,其不飽和脂肪酸含量佔總脂肪酸含量約65%,而H70之總脂肪酸含量為1.16 mg/g,較老菜脯少0.74 mg/g,其不飽和脂肪酸含量佔總脂肪酸含量約70%,表示H70脂肪酸組成與老菜脯相似。植物固醇部份,以H70總植物固醇含量最高為843.80 μg/100g,其中以γ-sitosterol含量最多,而植物固醇在許多文獻被證實具有預防肥胖及降低慢性疾病發生率之風險,表示H70在此方面具有高潛力。揮發性化合物部份,十字花科蔬菜香氣來源主要為異硫氰酸酯類及硫化物,本實驗總共鑑定出10種硫化物、2種異硫氰酸酯類、3種吲哚類及5種脂肪酸;新鮮白蘿蔔鑑定出4-(methylthio)-3-butenyl isothiocyanate (MTBITC)含量為8.05 μg/g,文獻指出其為白蘿蔔中最具影響力之化合物,亦為異硫氰酸酯類主要指標之一,然而經乾燥後皆發現4-isothicyanato-1-(methylthio)-1-butene,其亦為異硫氰酸酯類化合物,且在H70含量最高為22.66 μg/g;另外,值得探討的是鑑定出5種脂肪酸,此結果與上述脂肪酸結果相符,皆是以老菜脯含量較高,其中又以多元不飽和脂肪酸中的次亞麻油酸含量最高為183.61 μg/g。
    體外模式結果顯示,以巨噬細胞作為抗發炎試驗,SH70水萃取物及H70乙醇萃取物須在0.01 μg/mL時才不具細胞毒性,而在抑制TNF-α及IL-6促發炎因子產生方面,H70乙醇萃取物0.01 μg/mL時,就能有效降低TNF-α約183.31 ng/mL,而老菜脯乙醇萃取物在0.1 μg/mL時,亦能降低TNF-α約214.89 ng/mL。B16-F10細胞作為抗腫瘤試驗,並以流式細胞儀作為細胞週期分析,在H70水萃取物濃度為1 mg/mL時,細胞週期滯留於G2/M期為11.59%最高。由於蘿蔔硫素、異硫氰酸酯類及植物固醇皆被證實能夠使細胞週期停滯於G2/M期,以擾亂細胞活性及降低癌細胞形成之潛力,進而誘導細胞壞死,並非細胞凋亡,但細胞凋亡之誘導常伴隨著G2/M期之時間依賴性。
    綜合上述,H70具有發展為媲美老菜脯之生理活性成分及風味,亦能縮短老菜脯醃漬過程,因其具有高抗氧化能力,亦富含異硫氰酸酯類、植物固醇及多元不飽和脂肪酸,更能有效抑制TNF-α及IL-6促發炎因子產生,甚至使腫瘤細胞滯留於細胞中的G2/M期,證實70℃熱風乾燥具有工業發展之潛力。

    Radish (Raphanus sativus L.) is the Brassicaceae genus and belongs to deep-rooted crops. In traditional, fresh radishes are salted and then sun dried to produce dried radish with unique color and flavor. The main purpose is to store for a long time and prevent corruption. However, rarely literatures discuss the functional ingredients of radish. In this study, fresh radishes were prepared by hot air drying (H50、H 70、H 90) and were dried in the sun and heated-air drying (SH50、SH 70、SH 90) after preserved in 6% salt concentration. Compare with the commercial old dried-radish. The radishes are extracted with water, ethanol, methanol and ethyl acetate. Explore biologically active ingredients such as anti-oxidant, anti-tumor and other activities. The preliminary experimental results show that the water activity of three different processing methods of radish is between 0.4 and 0.6, making it easy to preserve. The extraction rate was methanol > water > ethanol > ethyl acetate. Especially the SH50 is the highest of 41.92%, 33.55%, 24.61% and 8.29%, respectively. the total polyphenols and total flavonoids were extracted with methanol superior to water, ethanol, and ethyl acetate. The content of total polyphenols extracted with methanol was the highest at 43.71 μg GAE/g, which was the H70. The total flavonoid extracted with methanol was the highest at 1.60 μg QE/g, which the H90. In addition, the antioxidant capacity, the scavenging rate of dried radish extracted with water, methanol, and ethanol was higher than the fresh radish. The DPPH of EC50 values extracted with methanol was the highest at 20.45 μg TE/g, which was the H90. The ABTS of EC50 values extracted with ethanol was the highest at 83.13 μg TE/g, which was the H90. The sulforaphane was only found in fresh radish pulp content 8.28 μg/g. Because sulforaphane is an unstable intermediate. The taste, which the most contributors are 5’-GMP and 5’-IMP. The H50, H 70 and H 90°C increased the most significant nucleotide content. The 5’-GMP of fresh radish was 0.22 μg/g increase to 13.42 μg/g, 24.42 μg/g and 17.78 μg/g, respectively. On the other hand, 5’-IMP of fresh radish was increased from 0.39 μg/g to 14.05 μg/g, 25.07 μg/g and 16.80 μg/g, respectively. Among them, the H70 was the most intense in the taste, indicating that the hot air drying process was helpful to increase its taste intensity. Fat and fatty acid was the highest at 6.14%, which is the commercial old dried-radish. In addition, total fatty acid was the highest at1.90 mg/g which is the commercial old dried-radish. The commercial old dried-radish of UFA content accounts for about 65% of TFA content. However, TFA of H70 was 1.16 mg/g, which less than 0.74 mg/g of the commercial old dried-radish. The H70 of UFA content accounts for about 70% of TFA content. Indicates that the H70 fatty acid composition is similar to that of the commercial old dried-radish. The phytosterol were identified the Campesterol and γ-sitosterol. Both had the highest contents at H70, which total phytosterol were 843.80 μg/100g. The phytosterol have been shown in many literatures to prevent obesity and reduce the risk of chronic disease. Indicates that H70 has high potential in this respect. Brassicaceae vegetable aroma sources are mainly isothiocyanates and sulfides. On this experiment a total of 10 kinds of sulfides, 2 kinds of isothiocyanates, 3 kinds of indole and 5 kinds of fatty acids were identified. In addition, found in the preliminary results of volatile compounds, the fresh radish contains 4-(methylthio)-3-butenyl isothiocyanate, which content in fresh radish were 8.04 μg/g. But after processing it is only found the 4-isothicyanato-1-(methylthio)-1-butene in the same retention time, which content the highest in H70 were 22.66 μg/g. In addition, the five fatty acids were identified, which content in commercial old dried-radish were the hightest. And the linolenic acid of PUFA were the hightest, which content in commercial old dried-radish were 183.61μg/g. The in vitro results show that SH70 water extract and H70 ethanol extract must not be cytotoxic at 0.01 μg/mL. When H70 ethanol extract is 0.01 μg/mL, it can effectively inhibit the production of TNF-α. Reduce the TNF-α about 183.31 ng/mL. And the ethanol extract of the commercial old dried-radish at 0.1 μg/mL, it also reduced TNF-α about 214.89 ng/mL. Using flow cytometry as a cell cycle analysis. When the H70 water extract concentration is 1 mg/mL, the cell cycle was retained in the G2/M phase with a maximum of 11.59%. Due to the sulforaphane, isothiocyanates and phytosterols have been shown to arrest the cell cycle in the G2/M phase. Order to disrupt cell activity and reduce the potential for cancer cell formation. Inducing cell necrosis, but not apoptosis. However, induction of apoptos is often accompanied by the time dependence of the G2/M phase.

    中文摘要...................................................................I
    Abstract..................................................................IV
    謝誌.....................................................................VII
    目錄....................................................................VIII
    表目錄...................................................................XII
    圖目錄..................................................................XIII
    1. 前言....................................................................1
    2. 文獻回顧................................................................2
    2.1 蘿蔔簡述..............................................................2
    2.1.1 蘿蔔品種介紹.......................................................2
    2.1.1.1 東方蘿蔔......................................................2
    2.1.1.2 櫻桃蘿蔔 (四季蘿蔔)............................................3
    2.1.1.3 葉用蘿蔔......................................................3
    2.1.1.4 鼠尾蘿蔔......................................................3
    2.1.2 蘿蔔功效及用途.....................................................4
    2.1.3 台灣蘿蔔種植面積及生產量............................................4
    2.2 蘿蔔乾介紹.............................................................7
    2.2.1 蘿蔔乾加工.........................................................7
    2.3 蘿蔔活性成分...........................................................8
    2.3.1 硫代葡萄糖苷 (Glucosinolates)水解物................................8
    2.3.2 蘿蔔硫素 (Sulforaphane)..........................................10
    2.3.3 維生素C (Vitamin C)..............................................12
    2.3.4 植物固醇 (Phytosterol)...........................................14
    2.3.5 多酚化合物 (Polyphenol)...........................................16
    2.3.6 黃酮類化合物 (Flavonoids).........................................18
    2.4 自由基與抗氧化活性....................................................21
    2.4.1 自由基...........................................................21
    2.4.2 抗氧化活性........................................................22
    2.5 呈味化學介紹..........................................................23
    2.5.1 核苷酸 (Nucleotide)..............................................25
    2.5.2 游離胺基酸 (Amino acid)...........................................25
    2.5.3 有機酸 (Organic acid)............................................29
    2.5.4 可溶性糖.........................................................29
    2.6 抗發炎試驗............................................................30
    2.6.1 抗發炎反應機制....................................................30
    2.6.2 巨噬細胞之介紹....................................................30
    2.6.3 脂多醣之介紹......................................................31
    2.6.4 脂多醣活化巨噬細胞之機制...........................................31
    2.7 細胞週期 (Cell cycle)................................................33
    3. 材料與方法..............................................................35
    3.1 實驗架構.............................................................35
    3.2 原料.................................................................36
    3.2.1 原料製備流程......................................................37
    3.3 實驗材料.............................................................41
    3.3.1 試藥.............................................................41
    3.3.2 儀器設備.........................................................43
    3.4 樣品製備及前處理......................................................44
    3.5 分析方法及測定........................................................44
    3.5.1 一般成分分析之測定................................................44
    3.5.1.1 水分含量之測定................................................44
    3.5.1.2 脂肪含量之測定................................................45
    3.5.2 游離脂肪酸含量之測定..............................................45
    3.5.3 水活性之測定......................................................46
    3.5.4 維生素C含量測定...................................................46
    3.5.5 植物固醇含量測定..................................................47
    3.5.6 抗氧化能力之分析..................................................48
    3.5.6.1 DPPH自由基清除能力試驗........................................48
    3.5.6.2 ABTS自由基清除能力試驗........................................48
    3.5.6.3 總多酚類化合物含量測定.........................................48
    3.5.6.4 總類黃酮含量測定..............................................49
    3.5.7 呈味成分分析......................................................50
    3.5.7.1 核苷酸含量測定................................................50
    3.5.7.2 游離胺基酸含量測定............................................50
    3.5.7.3 可溶性糖之測定................................................52
    3.5.7.4 有機酸含量之測定..............................................52
    3.5.8 蘿蔔硫素分析......................................................54
    3.5.9 揮發性成分之分析..................................................54
    3.5.9.1揮發性成分之鑑定...............................................55
    3.6 細胞模式─小鼠巨噬細胞株RAW 264.7.......................................56
    3.6.1 溶液配製.........................................................56
    3.6.2 RAW 264.7 之活化.................................................56
    3.6.3 RAW 264.7 之細胞保存..............................................56
    3.6.4 細胞及藥物培養條件................................................57
    3.6.5 細胞存活率測定 (MTT assay)........................................57
    3.6.6 酵素連結免疫分析法─TNF-α..........................................57
    3.6.7 酵素連結免疫分析法─IL-6...........................................58
    3.7 細胞模式─小鼠黑色素瘤細胞株B16-F10.....................................58
    3.7.1 溶液配製.........................................................58
    3.7.2 B16-F10 之活化...................................................59
    3.7.3 B16-F10 之細胞保存................................................59
    3.7.4 細胞及藥物培養條件................................................59
    3.7.5 細胞存活率測定 (MTT assay)........................................60
    3.7.6 細胞週期分析 (Cell cycle analysis)................................60
    3.7.7 細胞週期定量分析..................................................60
    3.8 統計分析.............................................................61
    4. 結果與討論..............................................................62
    4.1 加工成品之水分及水活性.................................................62
    4.2 加工成品之脂肪及脂肪酸含量.............................................64
    4.3 維生素C含量測定結果...................................................67
    4.4 新鮮白蘿蔔及加工成品之植物固醇含量分析..................................69
    4.5 新鮮白蘿蔔及加工成品之機能性成分含量分析................................73
    4.5.1 多酚類化合物含量測定之結果.........................................73
    4.5.2 總黃酮類含量測定之結果.............................................76
    4.5.3 新鮮蘿蔔及蘿蔔乾之蘿蔔硫素測定結果..................................79
    4.6 新鮮白蘿蔔及加工成品之抗氧化能力分析....................................81
    4.6.1 清除DPPH自由基之能力結果..........................................81
    4.6.2 總抗氧化能力測定結果..............................................86
    4.7 新鮮蘿蔔及加工成品呈味含量測定之結果....................................89
    4.7.1 新鮮蘿蔔及蘿蔔乾之核苷酸含量測定結果................................89
    4.7.2 新鮮蘿蔔及蘿蔔乾之游離胺基酸含量測定結果............................91
    4.7.3 新鮮蘿蔔及蘿蔔乾之可溶性糖含量測定結果..............................93
    4.7.4 新鮮蘿蔔及蘿蔔乾之有機酸含量測定結果................................93
    4.8 新鮮蘿蔔及加工成品揮發性化合物含量測定之結果.............................96
    4.9 以體外模式評估抑制發炎效果之結果─RAW264.7..............................101
    4.9.1 新鮮蘿蔔及蘿蔔乾萃取物對巨噬細胞生長之影響.........................101
    4.9.2 新鮮蘿蔔及蘿蔔乾萃取物抑制發炎效果評估.............................104
    4.10 以體外模式評估抑制腫瘤效果之結果─B16-F10..............................113
    4.10.1 新鮮蘿蔔及蘿蔔乾萃取物對小鼠黑色素瘤細胞生長之影響.................113
    4.10.2 新鮮蘿蔔及蘿蔔乾萃取物抑制腫瘤效果評估............................116
    5. 結論..................................................................123
    6. 參考文獻..............................................................126
    8. 作者介紹..............................................................138

    中華民國國家標準。CNS。1987。食品水分活性測定法,總號5255,類號N6119。經濟部標準檢驗局。
    王淑卿。2014。自由基與活性氧化物。科技部自然科學教學資源平台。http://highscope.ch.ntu.edu.tw/wordpress/?s=自由基與活性氧化物/。
    行政院農業委員會農糧署。2016。農糧統計。https://www.afa.gov.tw/cht/index.php?code=list&ids=324
    李文汕。2006。蘿蔔。台灣農家要覽:農作篇 (二)。豐年社編印 247-249。
    李時珍。2000。新訂本草綱目 (下)。世一文化事業股份有限公司 24-26。
    柯文慶、張献瑞、賴滋漢。2009。基礎食品加工學。台中富林出版社 38-39。
    范宇辰。2014。殺菁及乾燥處理對牛蒡根風味之影響。弘光科技大學食品科技系碩士論文。
    食品分析方法手冊。1990。食品工業研究所。新竹。台灣。
    翁建清。2003。舞菇、羊肚菌與雞肉絲菇菌絲體之呈味品質及其在食品加工上之應用。國立中興大學食品科學系碩士論文。
    翁家瑞。2004。食品加工。匯華圖書出版股份有限公司 17-18。
    陳弘坤。1986。洋菇濃縮物之呈味特性及其粉末化之研究。國立台灣大學 食品科技研究所碩士論文。
    陳俊瑋。2016。探討血桐 Macaranga tanarius 萃取物在小鼠巨噬細胞之抗發炎作用。國立宜蘭大學生物技術與動物科學系碩士論文。
    陳珮函。2017。蘿蔔乾加工過程及其品質研究。弘光科技大學食品科技系碩士論文。
    陳發興、劉星輝、陳立松。2005。果實有機酸代謝研究進展。果樹學報 22:526-531。
    曾逸昌。2008。蛻變中的客家人。客家通論570-572。
    黃智生。2008。發炎反應 --常見文明病的始作俑者。科學發展 422:6-10。
    黃薺緯。2002。金頂側耳之呈味特性和抗氧化及抗致突變性質。國立中興大學食品科學系碩士論文。
    劉耕宏。2012 a。真空包裝與冷凍儲藏對國產酪梨有機酸、葉黃素、α-生育醇及D-甘露庚酮糖含量變化之影響。國立宜蘭大學園藝學系碩士論文。
    劉萬珍。2012 b。五香蘿蔔乾的製作。科學種養。4: 46。
    衛生福利部食品藥物管理署。2013。食品中脂肪酸之檢驗方法。https://www.fda.gov.tw/TC/newsContent.aspx?cid=3&id=10506
    衛生福利部食品藥物管理署。2013。食品添加物規格檢驗方法-抗壞血酸鈉。https://www.fda.gov.tw/TC/newsContent.aspx?cid=3&id=10358
    衛生福利部食品藥物管理署。2015。食品營養成分資料庫 (新版)。https://consumer.fda.gov.tw/Food/tfndDetail.aspx?nodeID=178&f=0&id=435
    Aderem, A., Underhill, D. M. 1999. Mechanisms of phagocytosis in macrophages. Annual Review of Immunology 17: 593-623.
    Agatonovic-Kustrin, S., Kustrin, E., Morton, D. W. 2018. Phenolic acids contribution to antioxidant activities and comparative assessment of phenolic content in mango pulp and peel. South African Journal of Botany 116: 158-163.
    Aires, A., Carvalho, R. 2017. Rapid separation of indole glucosinolates in roots of chinese cabbage (brassica rapa subsp. pekinensis) by high-performance liquid chromatography with diode array detection. International Journal of Analytical Chemistry 5: 1-7.
    Ajlouni, S. O., Beelman, R. B., Thompson, D. B., Mau, J.-L. 1995. Changes in soluble sugars in various tissues of cultivated mushrooms, Agaricus bisporus, during postharvest storage. Developments in Food Science 37: 1865-1880.
    Athens, J. W. 1963. Blood: Leukocytes. Annual Review of Physiology 25: 195-212.
    Bachmanov, A. A., Bosak, N. P., Glendinning, J. I., Inoue, M., Li, X., Manita, S., Mccaughey, S. A., Murata, Y., Reed, D. R., Tordoff, M. G., Beauchamp, G. K. 2016. Genetics of Amino Acid Taste and Appetite. Advances in Nutrition 7: 806-822.
    Baenas, N., Gómez-Jodar, I., Moreno, D. A., García-Viguera, C., Periago, P. M. 2017. Broccoli and radish sprouts are safe and rich in bioactive phytochemicals. Postharvest Biology and Technology 127: 60-67.
    Bao, R., Fan, A., Hu, X., Liao, X., Chen, F. 2016. Effects of high pressure processing on the quality of pickled radish during refrigerated storage. Innovative Food Science & Emerging Technologies 38: 206-212.
    Barillari, J., Iori, R., Papi, A., Orlandi, M., Bartolini, G., Gabbanini, S., Pedulli, G. F., Valgimigli, L. 2008. Kaiware Daikon (Raphanus sativus L.) Extract: A Naturally Multipotent Chemopreventive Agent. Journal of Agricultural and Food Chemistry 56: 7823-7830.
    Bravo, L. 1998. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews 56: 317-333.
    Cartea, M. E., Francisco, M., Soengas, P., Velasco, P. 2010. Phenolic compounds in Brassica vegetables. Molecules 16: 251-280.
    Clarke, D. B. 2010. Glucosinolates, structures and analysis in food. Analytical Methods 2: 310-325.
    Clarke, J. D., Dashwood, R. H., Ho, E. 2008. Multi-targeted prevention of cancer by sulforaphane. Cancer Letters 269: 291-304.
    Cohen, S. D., Kennedy, J. A. 2010. Plant metabolism and the environment: implications for managing phenolics. Critical Reviews in Food Science and Nutrition 50: 620-643.
    Dias, M. I., Sousa, M. J., Alves, R. C., Ferreira, I. C. F. R. 2016. Exploring plant tissue culture to improve the production of phenolic compounds: A review. Industrial Crops and Products 82: 9-22.
    Dibner, J. J., Buttin, P. 2002. Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism1. The Journal of Applied Poultry Research, 11: 453-463.
    Dinkova-Kostova, A. T., Jenkins, S. N., Fahey, J. W., Ye, L., Wehage, S. L., Liby, K. T., Stephenson, K. K., Wade, K. L., Talalay, P. 2005. Protection against UV-light-induced skin carcinogenesis in SKH-1 high-risk mice by sulforaphane-containing broccoli sprout extracts. Cancer Letters 240: 243-252.
    Eck, P. 2018. Nutrigenomics of vitamin C absorption and transport. Current Opinion in Food Science 20: 100-104.
    El Bulk, R. E., Babiker, E. F. E., El Tinay, A. H. 1997. Changes in chemical composition of guava fruits during development and ripening. Food Chemistry 59: 395-399.
    Engel, R., Schubert, H. 2005. Formulation of phytosterols in emulsions for increased dose response in functional foods. Innovative Food Science & Emerging Technologies 6: 233-237.
    Fahey, J. W., Zalcmann, A. T., Talalay, P. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56: 5-51.
    Fakih, O., Sanver, D., Kane, D., Thorne, J. L. 2018. Exploring the biophysical properties of phytosterols in the plasma membrane for novel cancer prevention strategies. Biochimie 153: 150-161.
    Feng, M. Y., Han, J. H., Liu, C. M. 2006. The establishment of phytosterols determination in plant oils and the analysis of phytosterols content in edible oil. Chinese Journal of Hygiene 18: 197-201.
    Giuliani, A. L., Sarti, A. C., Di Virgilio, F. 2018. Extracellular nucleotides and nucleosides as signalling molecules. Immunology Letters Available online.
    Golsteyn, R. M. 2005. Cdk1 and Cdk2 complexes (cyclin dependent kinases) in apoptosis: a role beyond the cell cycle. Cancer Letters 217: 129-138.
    Goyeneche, R., Roura, S., Ponce, A., Vega-Gálvez, A., Quispe-Fuentes, I., Uribe, E., Di Scala, K. 2015. Chemical characterization and antioxidant capacity of red radish (Raphanus sativus L.) leaves and roots. Journal of Functional Foods 16: 256-264.
    Graham, S., Dayal, H., Swanson, M., Mittelman, A., Wilkinson, G. 1978. Diet in the epidemiology of cancer of the colon and rectum. Journal of the National Cancer Institute 61: 709-714.
    Griffiths, D. W., Birch, A. N. E., Hillman, J. R. 1998. Antinutritional compounds in the brassicaceae: analysis, biosynthesis, chemistry and dietary effects. Journal of Horticultural Science and Biotechnology 73: 1-18.
    Gu, Z.X., Guo, Q.H., Gu, Y.J. 2012. Factors influencing glucoraphanin and sulforaphane formation in brassica plants: A Review. Journal of Integrative Agriculture 11: 1804-1816.
    Hanlon, P. R., Webber, D. M., Barnes, D. M. 2007. Aqueous extract from spanish black radish (Raphanus sativus L. Var. niger) induces detoxification enzymes in the HepG2 human hepatoma cell line. Journal of Agricultural and Food Chemistry 55: 6439-6446.
    Herbig, A.L., Renard, C. M. 2017. Factors that impact the stability of vitamin C at intermediate temperatures in a food matrix. Food Chemistry 220: 444-451.
    Hon, S. L. 2014. Vitamin C (Ascorbic Acid). Oxford University Press. 962-963.
    Howard, L. A., Jeffery, E. H., Wallig, M. A., Klein, B. P. 1997. Retention of phytochemicals in fresh and processed broccoli. Journal of Food Science 62: 1098-1104.
    Iarc. 2004. Glucosinolates, isothiocyanates and indoles. International Agency for Research on Cancer 9: 262-273
    Jacob, J. A., Mahal, H. S., Mukherjee, T., Kapoor, S. 2011. Free radical reactions with the extract of brassica family. Food Chemistry 129: 1132-1138.
    Jacobsen, C. 2004. Developing polyunsaturated fatty acids as functional ingredients. Functional Foods, Cardiovascular Disease and Diabetes 307-332.
    Jia, Z., Tang, M., Wu, J. 1999. The determination of flavonoid contents in mulberry and their scavenging: effects on superoxide radicals. Food Chemistry 64: 555-559.
    Jones, P. J., Macdougall, D. E., Ntanios, F., Vanstone, C. A. 1997. Dietary phytosterols as cholesterol-lowering agents in humans. Canadian Journal of Physiology and Pharmacology 75: 217-227.
    Kawai, T., Akira, S. 2009. The roles of TLRs, RLRs and NLRs in pathogen recognition. International immunology 21: 317-337.
    Keum, Y.S., Jeong, W.S., Tony Kong, A.N. 2004. Chemoprevention by isothiocyanates and their underlying molecular signaling mechanisms. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 555: 191-202.
    Khurana, S., Venkataraman, K., Hollingsworth, A., Piche, M., Tai, T. C. 2013. Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients 5: 3779-3827.
    Kier, L. B. 1972. A molecular theory of sweet taste. Journal of Pharmaceutical Sciences 61: 1394-1397.
    Kim, D.-O., Lee, K. W., Lee, H. J., Lee, C. Y. 2002. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. Journal of Agricultural and Food Chemistry 50: 3713-3717.
    Kohlmeier, M. 2015. Carbohydrates, alcohols, and organic acids. Nutrient Metabolism 2: 187-242.
    Kook, S.H., Choi, K.C., Lee, Y.H., Cho, H.K., Lee, J.C. 2014. Raphanus sativus L. seeds prevent LPS-stimulated inflammatory response through negative regulation of the p38 MAPK-NF-κB pathway. International Immunopharmacology 23: 726-734.
    Kotani, K., Toyota, T., Yasumatsu, K. 1992. 5’-Ribonucleotides as flavor enhancers. Developments in Food Science 28: 523-546.
    Kurano, M., Hasegawa, K., Kunimi, M., Hara, M., Yatomi, Y., Teramoto, T., Tsukamoto, K. 2018. Sitosterol prevents obesity-related chronic inflammation. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1863: 191-198.
    Li, F., Zhang, X., Zheng, S., Lu, K., Zhao, G., Ming, J. 2016. The composition, antioxidant and antiproliferative capacities of phenolic compounds extracted from tartary buckwheat bran [Fagopyrum tartaricum (L.) Gaerth]. Journal of Functional Foods 22: 145-155.
    Lin, C.W., Yu, C.W., Wu, S.C., Yih, K.H. 2009. DPPH free-radical scavenging activity, total phenolic contents and chemical composition analysis of forty-two kinds of essential oils. Journal of Food & Drug Analysis 17: 386-395.
    Liu, R. H. 2007. Whole grain phytochemicals and health. Journal of Cereal Science 46: 207-219.
    Mahn, A., Martin, C., Reyes, A., Saavedra, A. 2016. Evolution of sulforaphane content in sulforaphane-enriched broccoli during tray drying. Journal of Food Engineering 186: 27-33.
    Matusheski, N. V., Juvik, J. A., Jeffery, E. H. 2004. Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli. Phytochemistry 65: 1273-1281.
    Mau, J. L., Chyau, C. C., Li, J. Y. and Tseng, Y. H. 1997. Flavor compounds in straw mushrooms Volvariella volvacea harvested at different stages of maturity. Journal of Agricultural and Food Chemistry 45: 4726-4729.
    Miller, N. J., Rice-Evans, C. A. 1996. Spectrophotometric determination of antioxidant activity. Redox Report 2: 161-171.
    Miller, S. I., Ernst, R. K., Bader, M. W. 2005. LPS, TLR4 and infectious disease diversity. Nature Reviews Microbiology 3: 36-46.
    Moing, A., Svanella, L., Monet, R., Rothan, C., Just, D., Diakou, P., Gaudillère, J. P., Rolin, D. 1998. Organic acid metabolism during the fruit development of two peach cultivars. International Society for Horticultural Science 465: 53.
    Morrison, D. C., Ryan, J. L. 1987. Mechanisms. Annual Review of Medicine 38: 417-432.
    Nabavi, S. M., Samec, D., Tomczyk, M., Milella, L., Russo, D., Habtemariam, S., Suntar, I., Rastrelli, L., Daglia, M., Xiao, J., Giampieri, F., Battino, M., Sobarzo-Sanchez, E., Nabavi, S. F., Yousefi, B., Jeandet, P., Xu, S., Shirooie, S. 2018. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnology Advances Available online.
    Nakamura, Y., Iwahashi, T., Tanaka, A., Koutani, J., Matsuo, T., Okamoto, S., Sato, K., Ohtsuki, K. 2001. 4-(Methylthio)-3-butenyl Isothiocyanate, a Principal Antimutagen in Daikon (Raphanus sativus; Japanese White Radish). Journal of Agricultural and Food Chemistry 49: 5755-5760.
    Nikhil, K., Sharan, S., Chakraborty, A., Bodipati, N., Krishna Peddinti, R., Roy, P. 2014. Role of isothiocyanate conjugate of pterostilbene on the inhibition of MCF-7 cell proliferation and tumor growth in Ehrlich ascitic cell induced tumor bearing mice. Experimental Cell Research 320: 311-328.
    Pardali, E., Paramithiotis, S., Papadelli, M., Mataragas, M., Drosinos, E. H. 2017. Lactic acid bacteria population dynamics during spontaneous fermentation of radish (Raphanus sativus L.) roots in brine. World Journal of Microbiology and Biotechnology 33: 110.
    Park, H.-J., Song, M. 2017. Leaves of Raphanus sativus L. shows Anti-inflammatory activity in LPS-stimulated macrophages via suppression of COX-2 and iNOS expression. Preventive Nutrition and Food Science 22: 50-55.
    Partanen, K. H., Mroz, Z. 1999. Organic acids for performance enhancement in pig diets. Nutrition Research Reviews 12: 117-145.
    Pawlik, A., Szczepanski, M. A., Klimaszewska, A., Gackowska, L., Zuryn, A., Grzanka, A. 2012. Phenethyl isothiocyanate-induced cytoskeletal changes and cell death in lung cancer cells. Food and Chemical Toxicology 50: 3577-3594.
    Pawlik, A., Wała, M., Hać, A., Felczykowska, A., Herman-Antosiewicz, A. 2017. Sulforaphene, an isothiocyanate present in radish plants, inhibits proliferation of human breast cancer cells. Phytomedicine 29: 1-10.
    Perez-Balibrea, S., Moreno, D. A., Garcia-Viguera, C. 2008. Influence of light on health-promoting phytochemicals of broccoli sprouts. Journal of the Science of Food and Agriculture 88: 904-910.
    Plumb, G. W., Lambert, N., Chambers, S. J., Wanigatunga, S., Heaney, R. K., Plumb, J. A., Aruoma, O. I., Halliwell, B., Miller, N. J., Williamson, G. 1996. Are whole extracts and purified glucosinolates from cruciferous vegetables antioxidants. Free Radical Research 25: 75-86.
    Pocasap, P., Weerapreeyakul, N., Barusrux, S. 2013. Cancer preventive effect of Thai rat-tailed radish (Raphanus sativus L. var. caudatus Alef). Journal of Functional Foods 5: 1372-1381.
    Podsedek, A. 2007. Natural antioxidants and antioxidant capacity of Brassica vegetables: A review. LWT - Food Science and Technology 40: 1-11.
    Pollak, O. J. 1985. Effect of plant sterols on serum lipids and atherosclerosis. Pharmacology & Therapeutics 31: 177-208.
    Prełowska, M., Kaczyńska, A., Herman-Antosiewicz, A. 2017. 4-(Methylthio)butyl isothiocyanate inhibits the proliferation of breast cancer cells with different receptor status. Pharmacological Reports 69: 1059-1066.
    Prior, R. L., Cao, G. 2000. Antioxidant phytochemicals in fruits and vegetables: diet and health implications. HortScience 35: 588-592.
    Racchi, M., Daglia, M., Lanni, C., Papetti, A., Govoni, S., Gazzani, G. 2002. Antiradical activity of water soluble components in common diet vegetables. Journal of Agricultural and Food Chemistry 50: 1272-1277.
    Ragasa, C., Ng, V. A., Torres, O., Samantha Y. Sevilla, N., Valerie M. Uy, K., Carmen S. Tan, M., G. Noel, M., Shen, C.-C. 2013. Sterols, triglycerides and essential fatty acid constituents of Brassica oleracea varieties, Brassica juncea and Raphanus sativus. Journal of Chemical and Pharmaceutical Research 5: 1237-1243.
    Raghu, V., Platel, K., Srinivasan, K. 2007. Comparison of ascorbic acid content of Emblica officinalis fruits determined by different analytical methods. Journal of Food Composition and Analysis 20: 529-533.
    Rask, L., Andreasson, E., Ekbom, B., Eriksson, S., Pontoppidan, B., Meijer, J. 2000. Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Molecular Biology 42: 93-113.
    Ricardo, L. L., Bernardi, D. I., Mantovanelli, G. C., Moreno, B. P., Mito, M. S., Silva, A. A., Silverio De Oliveira, R., Ishii- Iwamoto, E. L., Sarragiotto, M. H., Baldoqui, D. C. 2018. Phytochemical investigation and phytotoxic activity of aerial parts of oilseed radish (Raphanus sativus var. oleifer Stokes). Biochemical Systematics and Ecology 78: 52-58.
    Sangthong, S., Weerapreeyakul, N. 2016. Simultaneous quantification of sulforaphene and sulforaphane by reverse phase HPLC and their content in Raphanus sativus L. var. caudatus Alef extracts. Food Chemistry 201: 139-144.
    Sangthong, S., Weerapreeyakul, N., Lehtonen, M., Leppanen, J., Rautio, J. 2017. High-accuracy mass spectrometry for identification of sulphur-containing bioactive constituents and flavonoids in extracts of Raphanus sativus var. caudatus Alef (Thai rat-tailed radish). Journal of Functional Foods 31: 237-247.
    Schiffman, S. S., Dackis, C. 1975. Taste of nutrients: Amino acids, vitamins, and fatty acids. Perception & Psychophysics 17: 140-146.
    Shahidi, F., Wanasundara, P. K. 1992. Phenolic antioxidants. Critical Reviews in Food Science and Nutrition 32: 67-103.
    Shallenberger, F.2007. The Breakthrough Method to Renew Youthful Energy and Restore Health Basic Health Publications, Inc.
    Shallenberger, R. S., Acree, T. E. 1967. Molecular theory of sweet taste. Nature 216: 480-482.
    Simopoulos, A. P. 2002. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomedicine & Pharmacotherapy 56: 365-379.
    Singh, A. 2013. Sitosterol as an antioxidant in frying oils. Food Chemistry 137: 62-67.
    Spinola, V., Llorent-Martinez, E. J., Castilho, P. C. 2014. Determination of vitamin C in foods: Current state of method validation. Journal of Chromatography A 1369: 2-17.
    Sun, J., Zhang, M., Chen, P. 2016. GLS-Finder: a platform for fast profiling of glucosinolates in brassica vegetables. Journal of Agricultural and Food Chemistry 64: 4407-4415.
    Sundarraj, S., Thangam, R., Sreevani, V., Kaveri, K., Gunasekaran, P., Achiraman, S., Kannan, S. 2012. γ-Sitosterol from Acacia nilotica L. induces G2/M cell cycle arrest and apoptosis through c-Myc suppression in MCF-7 and A549 cells. Journal of Ethnopharmacology 141: 803-809.
    Suryadinata, R., Sadowski, M., Sarcevic, B. 2010. Control of cell cycle progression by phosphorylation of cyclin-dependent kinase (CDK) substrates. Bioscience Reports 30: 243-255.
    Takagaki, N., Sowa, Y., Oki, T., Nakanishi, R., Yogosawa, S., Sakai, T. 2005. Apigenin induces cell cycle arrest and p21/WAF1 expression in a p53-independent pathway. International Journal of Oncology 26: 185-189.
    Talalay, P., Fahey, J. W. 2001. Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. Journal of Nutrition 131: 3027-3033.
    Tanongkankit, Y., Chiewchan, N., Devahastin, S. 2011. Evolution of anticarcinogenic substance in dietary fibre powder from cabbage outer leaves during drying. Food Chemistry 127: 67-73.
    Taylor, M. W., Hershey, R.A., Levine, R.A., Coy, K. And Olivelle, S. 1981. Improved method of resolving nucleotides by reverse-phase high performance liquid chromatography. Journal of Chromatography 219: 133-139.
    Underhill, D. M., Goodridge, H. S. 2012. Information processing during phagocytosis. Nature Reviews Immunology 12: 492-502.
    Wu, Y., Shen, Y., Wu, X., Zhu, Y., Mupunga, J., Bao, W., Huang, J., Mao, J., Liu, S., You, Y. 2018. Hydrolysis before stir-frying increases the isothiocyanate content of broccoli. Journal of Agricultural and Food Chemistry 66: 1509-1515.
    Yamaguchi, S. 1967. The Synergistic Taste Effect of Monosodium Glutamate and Disodium 5′-Inosinate. Journal of Food Science 32: 473-478.
    Yamaguchi, S., Yoshikawa, T., Ikeda, S., Ninomiya, T. 1971. Measurement of the relative taste intensity of some l-α-amino acids and 5′-nucleotides. Journal of Food Science 36: 846-849.
    Yao, C., Jin, C. L., Oh, J. H., Oh, I. G., Park, C. H., Chung, J. H. 2015. Ardisia crenata extract stimulates melanogenesis in B16F10 melanoma cells through inhibiting ERK1/2 and Akt activation. Molecular Medicine Reports 11: 653-657.
    Ye, X.Q., Chen, J.C., Liu, D.H., Jiang, P., Shi, J., Xue, S., Wu, D., Xu, J.G., Kakuda, Y. 2011. Identification of bioactive composition and antioxidant activity in young mandarin fruits. Food Chemistry 124: 1561-1566.
    Zhang, L., Li, Y., Liang, Y., Liang, K., Zhang, F., Xu, T., Wang, M., Song, H., Liu, X., Lu, B. 2018. Determination of phenolic acid profiles by HPLC-MS in vegetables commonly consumed in China. Food Chemistry 276: 538-546.
    Zhang, Y., Talalay, P. 1994. Anticarcinogenic activities of organic isothiocyanates: chemistry and mechanisms. Cancer Research 54: 1976-1981.

    下載圖示
    QR CODE