簡易檢索 / 詳目顯示

研究生: 洪聖杰
Sheng-Jie Hung
論文名稱: 焙炒與擠壓加工對米糠品質之影響
Effects of roasting and extrusion processing on the quality of rice bran
指導教授: 林貞信
Lin, Jenshinn
余旭勝
Yu, Hsu-Sheng
學位類別: 碩士
Master
系所名稱: 農學院 - 食品科學系所
Department of Food Science
畢業學年度: 106
語文別: 中文
論文頁數: 139
中文關鍵詞: 米糠焙炒膨發擠壓加工蒸煮擠壓加工油脂氧化
外文關鍵詞: rice bran, roasted, collet extrusion processing, cooking extrusion processing, lipid oxidation
DOI URL: http://doi.org/10.6346/THE.NPUST.FS.007.2018.E11
相關次數: 點閱:105下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 本研究在探討熱加工:焙炒、膨發擠壓及蒸煮擠壓,對米糠品質的影響。研究分為三部分,第一部分米糠以炒焙處理後,在不同溫度(-20、7和25℃)下進行貯藏,測定米糠油脂品質(過氧化價、酸價及游離脂肪酸含量)及以掃描式電子顯微鏡觀察其微觀結構。第二部分米糠以擠壓加工方式處理後,於7℃下貯藏56天,每隔14天進行米糠油脂品質、米糠醇含量、膳食纖維含量(可溶性及不可溶性)測定及其微觀結構觀察,並找出最佳米糠擠壓加工條件。第三部分以最佳米糠擠壓加工條件加工米糠,於溫度27~28℃下貯藏28天,每隔7天再次測定米糠油脂品質及米糠醇含量。第一部分實驗結果發現,米糠焙炒後,與控制組相比,有極顯著性差異(p <0.01)。可以有效減緩米糠過氧化價、酸價及游離脂肪酸含量上升。特別在-20℃下貯藏25天,有最低的過氧化價、酸價及游離脂肪酸含量,分別為0.43±0.23 meq/kg、2.47±0.09 mg KOH/g及1.21±0.04%。在第二部分實驗結果發現,米糠經膨發擠壓加工及蒸煮擠壓加工後,於7℃下貯藏56天,與控制組相比,有極顯著性差異(p <0.01)。可以有效減緩米糠過氧化價、酸價及游離脂肪酸含量上升。從結果說明,米糠經擠壓加工後,可以減少米糠油脂氧化。關於米糠中的米糠醇,實驗結果發現,不論米糠是否經過擠壓加工,隨著貯藏時間增加,其米糠醇含量皆隨之下降,(控制組:4.57→1.78 mg/g;膨發型:4.40→1.97 mg/g;蒸煮型:4.39→2.26 mg/g),但貯藏56天後的米糠,有經過擠壓加工,其米糠醇含量較高。另外米糠中的可溶性膳食纖維,經過擠壓加工後,發現含量會增加,原本控制組是1.74%,經過膨發擠壓加工及蒸煮擠壓加工後,最高含量分別改變為4.18%和11.35%。從掃描式電子顯微鏡影像,得知米糠微觀結構,經擠壓加工後,受到強烈扭曲,使米糠的纖維素及脂溶性物質受到影響。根據前述五項實驗結果,選出最佳擠壓加工條件為,膨發擠壓加工條件(模具溫度:130℃;螺軸轉速:320 rpm)、蒸煮擠壓加工條件(套筒溫度:150及130℃;螺軸轉速:90 rpm)。第三部分實驗,以最佳擠壓加工條件處理米糠後,於27~28℃下進行貯藏試驗。試驗結果發現,貯藏28天後,膨發擠壓加工、蒸煮擠壓加工米糠的過氧化價分別為1.11、0.85 meq/kg、酸價分別為2.81、4.76 mg KOH/g、游離脂肪酸含量分別為1.41、2.39%及米糠醇含量分別為2.81、2.34 mg/g。與相同溫度(27~28℃)下貯藏28天後的米糠,其過氧化價(1.72 meq/kg)、酸價(13.13 mg KOH/g)、游離脂肪酸(7.60%)及米糠醇(2.12 mg/g)相比,擠壓加工後的米糠氧化情形可以減少、米糠醇裂解可以減緩。綜合以上三部分的實驗結果發現,米糠經熱加工(焙炒、擠壓)可以降低油脂氧化的發生、減緩米糠醇裂解及提升可溶性膳食纖維含量,不僅維持米糠的品質,還提升其營養價值。

    This study explored the effects of thermal processing: roasting, collet extrusion processing and cooking extrusion processing, on the quality of rice bran. The study was divided into three parts. In the first part, rice bran was roasted and stored at different temperatures (-20, 7 and 25℃) for its quality (peroxide value, acid value, free fatty acid content) and the microstructure by scanning electron microscope (SEM). In the second part, rice bran was treated by extrusion (collet, cooking) processing, and stored at 7°C for 56 days. Every 14 days rice bran’s quality, γ-oryzanol content, dietary fiber content (soluble and insoluble) were measured, and its microstructure was observed by SEM. According to the results of rice bran quality, γ-oryzanol content, dietary fiber content (soluble and insoluble), and SEM images, the best extrusion processing conditions would be determined. In the third part, rice bran was processed by the best extrusion processing conditions, and stored at temperature about 27 to 28°C for 28 days. The rice bran quality and the γ-oryzanol content were determined every 14 day. Results, in the first part of study, showed that roasted rice bran was significantly (p <0.01) different with the control group. It showed effectively slow down the peroxide value, acid value and free fatty acid content of roasted rice bran. Particularly when the rice bran was stored at -20°C for 25 days, the lowest peroxide value, acid value and free fatty acid content were 0.43±0.23 meq/kg, 2.47±0.09 mg KOH/g and 1.21±0.04%, respectively. Results, in the second part of the study, showed that the rice bran treated by collet extrusion processing and cooking extrusion stored at 7°C for 56 days were found significantly different with the control group. Extrusion processing could effectively slow down the peroxide value, acid value and free fatty acid content of rice bran. In other words, rice bran treated by extrusion processing resulted into the reducution of the happening of oxidation. Regarding γ-oryzanol of rice bran, the experimental results showed that whether rice bran was extruded or not, the content of γ-oryzanol decreased with the increasing storage times (control group: 4.57→1.78 mg/g, collet: 4.40→1.97 mg/g, cooking: 4.39→2.26 mg/g), but if rice bran treat by extrusion processing, and stored for more than 56 days, its γ-oryzanol was found higher. In addition, the rice bran treated by extrusion processing, its soluble dietary fiber was also found increased. The SDF of original control group was 1.74%, whereas it changed to 4.18% and 11.35%, respectively, when the rice bran was treated by collet extrusion processing and cooking extrusion processing. From the scanning electron microscope, the microstructure of the rice bran showed that the rice bran treated by extrusion processing, the rice bran structure was strongly distorted, which affected the cellulose and fat-soluble substances of rice bran. Based on the results mentioned in the three parts of the study, the best extrusion processing conditions were found for collet extrusion (die temperatures: 130°C, screw speeds: 320 rpm), and for cooking extrusion conditions (barrel temperatures: 150 and 130°C, screw speeds: 90 rpm), rice bran treated by extrusion processing stored at 27 to 28°C. The results found that after stored 28 days, the peroxide value of rice bran treated by collet extrusion processing and cooking extrusion processing, was 1.11, 0.85 meq/kg, the acid value was 2.81, 4.76 mg KOH/g, the free fatty acid content of rice bran was 1.41, 2.39% and the content of γ-oryzanol was 2.81, 2.34 mg/g, respectively. At same temperature (27 to 28℃) stored 28 days, compared with the peroxide value (1.72 meq/kg), acid value (13.13 mg KOH/g), free fatty acid content (7.60%) and the content of γ-oryzanol (2.12 mg/g) of rice bran. Rice bran treated by extrusion processing, its oxidation and degradation of γ-oryzanol would be reduced. Comprehensive results of the three parts of the study, the rice bran treated by thermal processing (roasting and extrusion) would reduce the happening of oxidation and the degradation of γ-oryzanol, whereas the thermal processing of rice bran would increase the soluble dietary fiber, maintaining the quality of the rice bran, but increasing the nutritional values.

    摘要 I
    Abstract III
    謝誌 VI
    目錄 VII
    圖目錄 X
    表目錄 XIII
    第1章 前言 1
    第2章 文獻回顧 2
    2.1稻米 2
    2.2糙米 7
    2.3米糠 9
    2.4米糠中機能性成分 12
    2.5米糠醇(γ-oryzanol,γ-穀維素) 13
    2.6維生素E 17
    2.7膳食纖維 20
    2.8米糠安定性 21
    2.8.1微波 21
    2.8.2擠壓 24
    2.8.3蒸煮法 29
    2.8.4歐姆加熱法(Ohmic heating method, OHM) 29
    2.8.5熱空氣輔助射頻(Hot air-assisted radio frequency, HAARF) 31
    2.8.6有機酸 31
    2.8.7其他 32
    2.9擠壓加工技術 32
    2.9.1擠壓加工簡介 32
    2.9.2擠壓加工技術優點 34
    2.9.3擠壓機分類 36
    2.9.4影響擠壓加工之參數 40
    第3章 材料與方法 42
    3.1實驗材料 42
    3.2實驗設計 42
    3.3加工條件 48
    3.3.1焙炒 48
    3.3.2碾白 48
    3.3.3膨發擠壓加工 48
    3.3.4蒸煮擠壓加工 48
    3.4實驗材料與設備 49
    3.4.1實驗試藥與溶劑 49
    3.4.2實驗設備 50
    3.5原料組成分分析測定 55
    3.5.1水分含量 55
    3.5.2粗蛋白含量 55
    3.5.3粗脂肪含量 56
    3.5.4灰分含量 56
    3.5.5總碳水化合物含量 56
    3.6理化性質分析 56
    3.6.1過氧化價(Peroxide value, POV) 56
    3.6.2酸價(Acid value, AV) 59
    3.6.3游離脂肪酸含量測定 60
    3.6.4米糠醇 61
    3.6.5膳食纖維(Dietary fiber, DF) 62
    3.6.6掃描式電子顯微鏡下微觀結構觀察 64
    3.6.7貯藏試驗 64
    3.7實驗數據整理及統計分析 64
    第4章 結果與討論 65
    4.1原料組成分分析結果 65
    4.2焙炒糙米其米糠理化性質分析 65
    4.2.1過氧化價(POV) 65
    4.2.2酸價(AV) 67
    4.2.3游離脂肪酸(Free fatty acid, FFA) 71
    4.2.5掃描式電子顯微鏡下觀察 71
    4.3膨發擠壓加工米糠之理化性質分析 75
    4.3.1過氧化價(POV) 75
    4.3.2酸價(AV) 80
    4.3.3游離脂肪酸(FFA) 83
    4.3.4米糠醇(γ-oryzanol) 86
    4.3.5總膳食纖維(Total dietary fiber, TDF) 91
    4.3.6掃描式電子顯微鏡下觀察米糠微觀結構之變化 93
    4.4蒸煮擠壓加工米糠之理化性質分析 96
    4.4.1過氧化價(POV) 96
    4.4.2酸價(AV) 100
    4.4.3游離脂肪酸(FFA) 104
    4.4.4米糠醇(γ-oryzanol) 107
    4.4.5總膳食纖維(TDF) 110
    4.4.6掃描式電子顯微鏡下觀察米糠之變化 113
    4.5 米糠經最佳擠壓加工條件其油脂品質測定 115
    4.5.1過氧化價(POV) 115
    4.5.2酸價(AV) 115
    4.5.3游離脂肪酸(FFA) 119
    4.5.4米糠醇(γ-oryzanol) 119
    五、結論與未來研究建議 120
    5.1結論 120
    5.2未來研究建議 121
    參考文獻 125
    作者簡介 138

    中華民國國家標準。2003。食用油脂檢驗法(過氧化價之測定),CNS總號3650類號N6085。
    中華民國國家標準。2003。食用油脂檢驗法(酸價之測定),CNS總號3647類號N6082。
    王柏蓉、張瑞炘。2014。稻米機能性成分與保健功效。臺中區農業專訊86:24-6。
    朱永義。2003。擠壓膨化對糙米理化特性的影響。中國糧油學報 18 :14-16。
    江伯源、盧訓、林子清。1998。不同儲存時間對原料米及米飯品質之影響。食品科學25:559-568。
    吳國豪。2007。糙米發酵飲品之製造與抗氧化性質研究。國立中興大學食品暨應用生物科技學系。碩士論文。
    李希熙、許占蘭、張志慧、趙思明。2011。熱處理對米糠及米糠油特性的影響。糧食與飼料工業。
    李非撰。2012。發芽糙米膨發加工之條件與品質探討。國立臺灣海洋大學食品科學系碩士學位論文。
    李俐樺。2015。糯米糠和米糠成分比較及其抗氧化肽制備工藝研究。重慶工商大學環境工程碩士論文。
    周孟嫻、許嘉伊。2013。國內外稻米產業結構與發展趨勢。農業生技產業季刊糧食安全與生技。
    周清富、林貞信。2007。擠壓加工與儲存條件對玉米澱粉擠出物。
    林苑暉。2003。糙米添加芡實之擠壓食品理化特性及其生理活性之探討。國立中興大學食品科學系碩士論文。
    林貞信。2017。生活中的休閒食品-擠壓加工技術原理與應用。科學月刊第四十八卷第六期:422-423。
    邱乙彧。2014。比較微波輔助及熱風乾燥對米糠麵條的理化性質及食用品質之影響。靜宜大學食品營養學系碩士論文。
    金征宇。2005。擠壓食品。中國輕工業出版社。
    施明智、江文章。1992。擠壓加工條件對以玉米為基材的擠壓半成品物化特性之影響。中國農業化學會誌。30: 454-461。
    徐紅華、許岩、肖志剛。2004。不同擠壓膨化條件對稻麩中可溶性膳食纖維含量的影響。食品科技 12: 89-94。
    徐樹來。2007。擠壓加工對米糠主要營養成分影響的研究。中國糧油學報。第22卷第3期。
    高崇烈、林貞信。1997。國產單軸擠壓機生產米粉絲之研究,論文摘要集第87頁。農業機械論文發表會,嘉義。(NSC86-2313-B-020-011)
    張士浤。2006。由生質柴油餾餘物中分離米糠醇之探討。國立臺灣科技大學化學工程系碩士學位論文。
    張學琨、侯福分。2006。稻米產銷對環境及健康之影響。生物技術與綠色農業研討會專刊。117-155頁。
    曹雁平。2002。食品調味技術。化學工業出版社:160-162。
    許儷瀞。2012。擠壓加工對國產稻米理化性質及益生菌生長效果之影響。國立屏東科技大學食品科學系碩士論文。
    陳立煌、彭錦樵、許振忠、黃英豪。1996。單軸擠壓機加工全脂大豆粉之研究。中國畜牧學會會誌 25:13-21。
    陳昭睿、王泠雅、賴世明、張傑明。2011。由米糠產製米糠醇油。化工第58卷第l 期。
    陳榮坤。2012。保健用稻米品種的發展概況。台南區農業專訊82:4-7。
    曾慶瀛、余哲仁、洪沄利。1994。烏豆、薏仁和糙米應用於早餐穀粉之製造。中華生質能源學會會誌13: 102-109。
    甯鈞慧。2003。探討擠壓蕎加工蕎麥粉對倉鼠血脂質及抗凝血因子之影響。靜宜大學食品營養研究所碩士論文。中抗性澱粉含量的影響。台灣農業化學與食品科學45:227-236。
    黃三龍。2003。簡介食品擠壓機的特色、應用與最新發展概況。食品工業35:39-45。
    黃三龍。2012。健康穀物加工食品的開發與應用。興大農業健康穀物專輯第80期。
    黃怡仁、宋鴻宜。2014。糧食安全與稻米科技。行政院農業委員會農糧署糧食產業組-水稻機能性成分之研究成果第39期。
    黃怡菁。2011。微波前處理與介質研磨對米糠中游離脂肪酸與機能性成份之影響。國立臺灣大學食品科技所碩士論文。
    黃鈴懿。2010。自米糠生產米糠醇、γ-胺基丁酸及植酸之流程評估。國立臺灣海洋大學食品科學系碩士學位論文。
    黃謙勝、張為憲。1988。糙米擠壓條件及添加蛋白質對產品品質之影響。食品科學15:315-22。
    楊淑華。2004。薏仁品種及白米添加比例對擠壓產品物理化學及抗氧化特性之影響。國立中興大學生物產業機電工程學系所論文。
    廖志偉、魏恆巍、林美峰。2016。安定化處理對米糠保存及其對離乳豬生長性狀之影響。中國畜牧學會會誌 45:143-163。
    蔡佳原。2000。食品在擠壓烹煮加工中的流變性質。食品工業 32:22-39。
    蔡泳儀。2012。健康穀物加工食品的開發與應用。興大農業健康穀物專輯第80期。
    蔣丙煌。1999。機能性食品配料-高纖維米糠製品之研究。國家科學委員會補助專題計畫成果報告。
    蔣甜燕、王立、周素梅、張暉、姚惠源。2006。擠壓對米糠蛋白功能性值的影響。中國實驗科學院實產品加工研究所。
    鄭宏。2004。從米糠油中提取米糠醇之研究。國立臺灣科技大學化學工程系碩士學位論文。
    謝瑩、林親祿、吳偉。2012。米糠微波穩定化工藝優化。糧食與油脂第12期。
    藍敬順。2010。大豆分離蛋白、米穀粉與澱粉對組織化全脂大豆蛋白品質之影響。國立屏東科技大學食品科學系碩士論文。
    魏益民、杜雙奎、趙學傳。2009。食品擠壓理論與技術(上卷)。北京:中國輕工業出版社。
    鐘明達。1998。螺軸轉速、原料組成和粒徑對米擠出物的理化特性之影響。國立屏東科技大學食品科學系碩士論文。
    Amarasinghe, B. M. W. P. K., Kumarasiri, M. P. M., & Gangodavilage, N. C. 2009. Effect of method of stabilization on aqueous extraction of rice bran oil. Food and Bioproducts Processing. 87: 108-114.
    AOAC. 1995. Official Methods of Analysis. 16th ed. Association of Official Analytical Chemists. 32. 1. 17. Washington, D. C.
    AOAC. 2012. Official methods of analysis of AOAC International, 19th ed. Gaithersburg, USA.
    Arab, F., Alemzadeh, I., & Maghsoudi, V. 2011. Determination of antioxidant component and activity of rice bran extract. Scientia Iranica. 18: 1402-1406.
    Belitz, H. D., Grosch, W., Schieberle, P. 2008. Food Chemistry: 3rd revised edition. Beijing: China Agricultural University Press. 296-297.
    Berk, Z. 2008. Food Process Engineering and Technology. In: Berk Z, editor. 1st edition. Elsevier B.V. Academic Press Amsterdam, Netherlands.
    Bhatnagar, A. S., Prabhakar, D. S., Kumar, P. P., Rajan, R. R., & Krishna, A. G. 2014. Processing of commercial rice bran for the production of fat and nutraceutical rich rice brokens, rice germ and pure bran. LWT-Food Science and Technology. 58: 306-311.
    Bitencourt, R. G., Rammazzina Filho, W. A., Paula, J. T., Garmus, T. T., & Cabral, F. A. 2016. Solubility of γ-oryzanol in supercritical carbon dioxide and extraction from rice bran. The Journal of Supercritical Fluids. 107: 196-200.
    Bonadonna, R., Cucinotta, D., Fedele, D., Riccardi, G., Tiengo, A. 2006. The metabolic syndrome is a risk indicator of microvascular and macrovascular complications in diabetes: results from Metascreen, a multicenter diabetes clinic-based survey. Diabetes Care. 2701-2707.
    Brunschwiler, C., Heine, D., Kappeler, S., Conde-Petit, B., & Nyström, L. 2013. Direct measurement of rice bran lipase activity for inactivation kinetics and storage stability prediction. Journal of Cereal Science. 58: 272-277.
    Codex Alimentarius. 2001. Fats, oils and related products (2nd ed.). Rome, Italy: FAO/WHO Food Standards Programme.
    Camire, M. E. 1991. Extrusion cooking. In: Henry, C. J .K. and Chapman C, eds. The Nutrition Handbook for Food Processors. CRC Press LLC, Boca Raton, Florida, USA. 314-330.
    Charunuch, C., Limsangouan, N., Prasert, W., & Wongkrajang, K. 2014. Optimization of extrusion conditions for ready-to-eat breakfast cereal enhanced with defatted rice bran. International Food Research Journal. 21: 713-722.
    Chen, S., Xing, X. H., Huang, J. J., & Xu, M. S. 2011. Enzyme-assisted extraction of flavonoids from Ginkgo biloba leaves: improvement effect of flavonol transglycosylation catalyzed by Penicillium decumbens cellulase. Enzyme and Microbial Technology. 48: 100-105.
    Chevanan, N., Rosentrater, K. A., & Muthukumarappan, K. 2010. Effects of processing conditions on single screw extrusion of feed ingredients containing DDGS. Food and Bioprocess Technology. 3: 111-120.
    Chinma, C. E., Ramakrishnan, Y., Ilowefah, M., Hanis-Syazwani, M., & Muhammad, K. 2015. Properties of cereal brans: A review. Cereal Chemistry. 92: 1-7.
    Chinnaswamy, R., Hanna, M. A., & Zobel, H. F. 1989. Microsturctural, physiochemical, and macromolecular changes in extrusion-cooked and retrograded corn starch. Cereal Foods World. 35:415.
    Chung, H. S., & Woo, W. S. 2001. A quinolone alkaloid with antioxidant activity from the aleurone layer of anthocyanin-pigmented rice. Journal of Natural Products. 64: 1579-1580.
    Cunniff, P. 1995. AOAC Official methods of analysis. AOAC International, Arlington, 45-46.
    da Silva, M. A., Sanches, C., & Amante, E. R. 2006. Prevention of hydrolytic rancidity in rice bran. Journal of Food Engineering. 75: 487-491.
    Daskalopoulou, S. S., Athyros, V. G., Elisaf, M., & Mikhailidis, D. 2004. The impact of serum uric acid on cardiovascular outcomes in the LIFE study. Kidney International. 66: 1714-1715.
    De Deckere, E. A. M., & Korver, O. 1996. Minor constituents of rice bran oil as functional foods. Nutrition Reviews. 54: 120-126.
    Della, V. P., Kuhn, I., & Hotza, D. 2001. Caracterização de cinza de casca de arroz para uso como matéria-prima na fabricação de refratários de sílica. Química Nova. 24: 778-782.
    Deng, G. F., Xu, X. R., Zhang, Y., Li, D., Gan, R. Y., & Li, H. B. 2013. Phenolic compounds and bioactivities of pigmented rice. Critical Reviews in Food Science and Nutrition. 53: 296-306.
    Ding, Q. B., Ainsworth, P., Tucker, G., & Marson, H. 2005. The effect of extrusion conditions on the physicochemical properties and sensory characteristics of rice-based expanded snacks. Journal of Food Engineering. 66: 283-289.
    Dziezak, J. D. 1989. Single- and twin-screw extruders in food processing. Food Technology. 43: 164-174.
    Foschia, M., Peressini, D., Sensidoni, A., & Brennan, C. S. 2013. The effects of dietary fibre addition on the quality of common cereal products. Journal of Cereal Science. 58: 216-227.
    Fromm, J., Rockel, B., Lautner, S., Windeisen, E., & Wanner, G. 2003. Lignin distribution in wood cell walls determined by TEM and backscattered SEM techniques. Journal of Structural Biology. 143: 77-84.
    Gomez, M. H., & Aguilera, J. M. 1983. Changes in the starch fraction during extrusion‐cooking of corn. Journal of Food Science. 48: 378-381.
    Gopinger, E., Ziegler, V., da Silva Catalan, A. A., Krabbe, E. L., Elias, M. C., & Xavier, E. G. 2015. Whole rice bran stabilization using a short chain organic acid mixture. Journal of Stored Products Research. 61: 108-113.
    Guha, M., S. Z. Ali, and S. Bhattacharya.1997. Twin screw extrusion of rice flour without a die: Effect of barrel temperature and screw speed on extrusion and extrudates characteristics. Journal Food Engineering. 32: 251-267.
    Gujral, H. S., Singh, N., & Singh, B. 2001. Extrusion behaviour of grits from flint and sweet corn. Food Chemistry. 74: 303-308.
    Gul, K., Yousuf, B., Singh, A. K., Singh, P., & Wani, A. A. 2015. Rice bran: Nutritional values and its emerging potential for development of functional food—A review. Bioactive Carbohydrates and Dietary Fibre. 6: 24-30.
    Ha, T. Y., Ko, S. N., Lee, S. M., Kim, H. R., Chung, S. H., Kim, S. R., ... & Kim, I. H. 2006. Changes in nutraceutical lipid components of rice at different degrees of milling. European Journal of Lipid Science and Technology. 108: 175-181.
    Hammond, N. 1994. Functional and nutritional characteristics of rice bran extracts. Cereal Foods World. 39: 752-754.
    Harper, J. M. 1981. Extrusion of Foods. Vol I and Π. CRC press, Inc., Boca Raton, Florida, USA .
    Harper, J. M. 1981. Extrusion of Foods. In: Harper J. M, editor. CRC Press LLC. Boca Raton, Florida, USA.
    He, B., Nohara, K., Ajami, N. J., Michalek, R. D., Tian, X., Wong, M., & Chen, Z. 2015. Transmissible microbial and metabolomic remodeling by soluble dietary fiber improves metabolic homeostasis. Scientific Reports, 5, 10604.
    Hsieh, F., Peng, I. C., & Huff, H. E. 1990. Effects of salt, sugar and screw speed on processing and product variables of corn meal extruded with a twin‐screw extruder. Journal of Food Science. 55: 224-227.
    Hu, C., Zawistowski, J., Ling, W., & Kitts, D. D. 2003. Black rice (Oryza sativa L. indica) pigmented fraction suppresses both reactive oxygen species and nitric oxide in chemical and biological model systems. Journal of Agricultural and Food Chemistry. 51: 5271-5277.
    Justo, M. L., Claro, C., Vila, E., Herrera, M. D., & Rodriguez-Rodriguez, R. 2014. Microvascular disorders in obese Zucker rats are restored by a rice bran diet. Nutrition, Metabolism and Cardiovascular Diseases. 24: 524-531.
    Kim, I. H., Kim, C. J., You, J. M., Lee, K. W., Kim, C. T., Chung, S. H., & Tae, B. S. 2002. Effect of roasting temperature and time on the chemical composition of rice germ oil. Journal of the American Oil Chemists' Society. 79: 413-418.
    Kim, S. M., Chung, H. J., & Lim, S. T. 2014. Effect of various heat treatments on rancidity and some bioactive compounds of rice bran. Journal of Cereal Science. 60: 243-248.
    Kokini, J. L., Chang, C. N., Lai, L. S. 1992. The role of rheological properties on extrudate expansion. Food Extrusion Science and Technology. New York,:Marcel Dekker Inc. 631-653.
    Kour, J., & Saxena, D. C. 2014. Studies on the development of nutraceutical foods using extrusion. Technology–A review. Austin Journal of Nutrition and Food Sciences. 2: 1-7.
    Kovatcheva-Datchary, P., Nilsson, A., Akrami, R., Lee, Y. S., De Vadder, F., Arora, T & Bäckhed, F. 2015. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metabolism. 22: 971-982.
    Lakkakula, N. R., Lima, M., & Walker, T. 2004. Rice bran stabilization and rice bran oil extraction using ohmic heating. Bioresource Technology. 92: 157-161.
    Lemus, C., Angelis, A., Halabalaki, M., & Skaltsounis, A. L. 2014. γ-oryzanol: an attractive bioactive component from rice bran. In Wheat and Rice in Disease Prevention and Health. 409-430.
    Lin, S., Huff, H. E., & Hsieh, F. 2002. Extrusion process parameters, sensory characteristics, and structural properties of a high moisture soy protein meat analog. Journal of Food Science. 67: 1066-1072.
    Ling, W. H., Wang, L. L., & Ma, J. 2002. Supplementation of the black rice outer layer fraction to rabbits decreases atherosclerotic plaque formation and increases antioxidant status. The Journal of Nutrition. 132: 20-26.
    Ling, B., Lyng, J. G., & Wang, S. 2018. Effects of hot air-assisted radio frequency heating on enzyme inactivation, lipid stability and product quality of rice bran. LWT- Food Science and Technology, 91, 453-459.
    Lloyd, B. J., Siebenmorgen, T. J., & Beers, K. W. 2000. Effects of commercial processing on antioxidants in rice bran. Cereal Chemistry. 77: 551-555.
    Loypimai, P., Moonggarm, A., & Chottanom, P. 2009. Effects of ohmic heating on lipase activity, bioactive compounds and antioxidant activity of rice bran. Aust Journal of Basic and Applied Sciences. 3: 3642-3652.
    Loypimai, P., Moongngarm, A., Chottanom, P., & Moontree, T. 2015. Ohmic heating-assisted extraction of anthocyanins from black rice bran to prepare a natural food colourant. Innovative Food Science & Emerging Technologies, 27, 102-110.
    Manisha, G., Zakiuddin Ali, S., & Suvendu, B. 1998. Effect of barrel temperature and screw speed on rapid viscoanalyser pasting behaviour of rice extrudate. International Journal of Food Science and Technology. 33: 259-266.
    Miller, S. S., & Fulcher, R. G. 1994. Distribution of (1→3),(1→4)-β-D-glucan in kernels of oats and barley using microspectroflurometry. Cereal Chemistry (USA). 71: 64-68.
    Mitra, P., Ramaswamy, H. S., & Chang, K. S. 2009. Pumpkin (Cucurbita maxima) seed oil extraction using supercritical carbon dioxide and physicochemical properties of the oil. Journal of Food Engineering, 95: 208-213.
    Montanher, S. F., Oliveira, E. A., & Rollemberg, M. C. 2005. Removal of metal ions from aqueous solutions by sorption onto rice bran. Journal of Hazardous Materials. 117: 207-211.
    Moraru, C. I., & Kokini, J. L. 2003. Nucleation and expansion during extrusion and microwave heating of cereal foods. Comprehensive Reviews in Food Science and Food Safety. 2: 147-165.
    Moscicki, L. (Ed.). 2011. Extrusion-cooking techniques: applications, theory and sustainability. John Wiley & Sons.
    Mujahid, A., Asif, M., & Gilani, A. H. 2005. Effect of various processing techniques and different levels of antioxidant on stability of rice bran during storage. Journal of the Science of Food and Agriculture. 85: 847-852.
    Nair, G.R., Divya, V.R., Prasannan, L., Habeeba, V., Prince, M.V., & Raghavan, G.S.V. 2012. Ohmic heating as a pre-treatment in solvent extraction of rice bran. Journal of Food Science and Technology.
    Ohita, H., Aibara, S., Yamashita, H., Sekiyama, F., & Morita, Y. 1990. Post-harvest drying of fresh rice grain and its effects on deterioration of lipid during storage. Agricultural and Biological Chemistry. 54: 1157-1164.
    Owusu-Ansah, J., Van de Voort, F. R., & Stanley, D. W. 1983. Physicochemical changes in cornstarch as a function of extrusion variables. Cereal Chemistry 60: 319-324.
    Patel, M., & Naik, S. N. 2004. Gamma-oryzanol from rice bran oil–A review. Journal of Scientific & Industrial Research. 569-578.
    Patil, S. S., Kar, A., & Mohapatra, D. 2016. Stabilization of rice bran using microwave: Process optimization and storage studies. Food and Bioproducts Processing. 99: 204-211.
    Peng, J. 1993. Residence time distribution modeling for twin-screw extrusion of rice flour. Ph.D. Dissertation. University of Missouri-Columbia. Columbia, MO.
    Prabhu, A. A., & Jayadeep, A. 2015. Enzymatic processing of pigmented and non pigmented rice bran on changes in oryzanol, polyphenols and antioxidant activity. Journal of Food Science and Technology. 52: 6538-6546.
    Ramezanzadeh, F. M., Rao, R. M., Windhauser, M., Prinyawiwatkul, W., Tulley, R., & Marshall, W. E. 1999. Prevention of hydrolytic rancidity in rice bran during storage. Journal of Agricultural and Food Chemistry. 47: 3050-3052.
    Roehrig, K. L. 1988. The physiological effects of dietary fiber—a review. Food Hydrocolloids. 2: 1-18.
    Rohman, A. 2014. Rice bran oil’s role in health and cooking. In Wheat and Rice in Disease Prevention and Health. 481-490.
    Russell, P. L., & Juliano, B. O. 1983. Differential scanning calorimetry of rice starches. Starch‐Stärke. 35: 382-386.
    Saunders, R. M. 1985. Rice bran: Composition and potential food uses. Food Reviews International. 1: 465-495.
    Schramm, R., Abadie, A., Hua, N., Xu, Z., & Lima, M. 2007. Fractionation of the rice bran layer and quantification of vitamin E, oryzanol, protein, and rice bran saccharide. Journal of Biological Engineering. 1: 9.
    Seker, M. 2005. Residence time distributions of starch with high moisture content in a single-screw extruder. Journal of Food Engineering. 67: 317-324.
    Sharma, H. R., Chauhan, G. S., & Agrawal, K. 2004. Physico-chemical characteristics of rice bran processed by dry heating and extrusion cooking. International Journal of Food Properties. 7: 603-614.
    Shibuya, N., Nakane, R. E. I. K. O., Yasui, A. K. E. M. I., Tanaka, K. E. N. J. I., & Iwasaki, T. E. T. S. U. Y. A. 1985. Comparative studies on cell wall preparations from rice bran, germ, and endosperm. Cereal Chemistry. 62: 252-258.
    Singh, J., Kaur, L., McCarthy, O. J., Moughan, P. J., & Singh, H. 2009. Development and characterization of extruded snacks from New Zealand Taewa (Maori potato) flours. Food Research International, 42: 666-673.
    Smith, O. B. 1969. History and status of specific protein rich foods. Extrusion processed cereal foods. Protein-Enriched Cereal Foods for World Needs. 140.
    Snow, N. H., & Slack, G. C. 2002. Head-space analysis in modern gas chromatography. TrAC Trends in Analytical Chemistry. 21: 608-617.
    Sokhey, A. S., Ali, Y., & Hanna, M. A. 1997. Effects of die dimensions on extruder performance. Journal of Food Engineering. 31: 251-261.
    Sowbhagya, C. M., & Bhattacharya, K. R. 2001. Changes in pasting behaviour of rice during ageing. Journal of Cereal Science. 34: 115-124.
    Srichamnong, W., Thiyajai, P., & Charoenkiatkul, S. 2016. Conventional steaming retains tocols and γ-oryzanol better than boiling and frying in the jasmine rice variety Khao dok mali 105. Food Chemistry. 191: 113-119.
    Stojceska, V., Ainsworth, P., Plunkett, A., & İbanoğlu, Ş. 2010. The advantage of using extrusion processing for increasing dietary fibre level in gluten-free products. Food Chemistry. 121: 156-164.
    Sung, W. C. 2005. Effect of gamma irradiation on rice and its food products. Radiation Physics and Chemistry. 73: 224-228.
    Tanchotikul, U., & HSIEH, T. C. Y. 1989. Volatile flavor components in crayfish waste. Journal of Food Science. 54: 1515-1520.
    Thanonkaew, A., Wongyai, S., McClements, D. J., & Decker, E. A. 2012. Effect of stabilization of rice bran by domestic heating on mechanical extraction yield, quality, and antioxidant properties of cold-pressed rice bran oil (Oryza saltiva L.). LWT-Food Science and Technology. 48: 231-236.
    Wang, J. P., An, H. Z., Jin, Z. Y., Xie, Z. J., Zhuang, H. N., & Kim, J. M. 2013. Emulsifiers and thickeners on extrusion-cooked instant rice product. Journal of Food Science and Technology. 50: 655-666.
    Wen, Y., Niu, M., Zhang, B., Zhao, S., & Xiong, S. 2017. Structural characteristics and functional properties of rice bran dietary fiber modified by enzymatic and enzyme-micronization treatments. LWT-Food Science and Technology. 75: 344-351.
    Xia, M., Ling, W. H., Ma, J., Kitts, D. D., & Zawistowski, J. 2003. Supplementation of diets with the black rice pigment fraction attenuates atherosclerotic plaque formation in apolipoprotein e deficient mice. The Journal of Nutrition. 133: 744-751.
    Xu, Z., Hua, N., & Godber, J. S. 2001. Antioxidant activity of tocopherols, tocotrienols, and γ-Oryzanol components from rice bran against cholesterol oxidation accelerated by 2, 2 ‘-Azobis (2-methylpropionamidine) dihydrochloride. Journal of Agricultural and Food Chemistry. 49: 2077-2081.
    Yağcı, S., & Göğüş, F. 2008. Response surface methodology for evaluation of physical and functional properties of extruded snack foods developed from food-by-products. Journal of Food Engineering. 86: 122-132.
    Yan, X., Ye, R., & Chen, Y. 2015. Blasting extrusion processing: the increase of soluble dietary fiber content and extraction of soluble-fiber polysaccharides from wheat bran. Food Chemistry. 180: 106-115.
    Yılmaz, N. 2016. Middle infrared stabilization of individual rice bran milling fractions. Food Chemistry. 190: 179-185.
    Zeng, M., Zhang, L., He, Z., Qin, F., Tang, X., Huang, X., Qu, H & Chen, J. 2012. Determination of flavor components of rice bran by GC-MS and chemometrics. Analytical Methods. 4: 539-545.

    下載圖示
    QR CODE