簡易檢索 / 詳目顯示

研究生: 廖昱豪
Liao, Yu-Hao
論文名稱: 探討地錦草萃取物之刺激葡萄糖攝取潛力及傳訊路徑
Study on glucose uptake stimulatory potential and signaling pathways from Euphorbia humifusa extract
指導教授: 廖遠東
Liaw, Ean-Tun
學位類別: 碩士
Master
系所名稱: 農學院 - 食品科學系所
Department of Food Science
畢業學年度: 106
語文別: 中文
論文頁數: 148
中文關鍵詞: 地錦草 (Euphorbia humifusa)抗氧化醣類消化酵素葡萄糖攝取西方墨點法
外文關鍵詞: Euphorbia humifusa, antioxidant, starch degradation enzymes, glucose uptake, Western blot
DOI URL: http://doi.org/10.6346/THE.NPUST.FS.020.2018.E11
相關次數: 點閱:90下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 糖尿病 (Diabetes mellitus) 蔓延至世界各地,但目前治療糖尿病之藥物種類有限,且伴隨多種副作用。因此,近年來許多學者極力於研究中草藥,其天然物之低副作用及富含多種潛在活性,已廣泛應用於糖尿病預防及治療。地錦草 (Euphorbia humifusa) 屬於大戟科植物,為中醫廣用藥材且具有多種藥理作用,如抗菌、抗腫瘤等。本研究以熱水及不同濃度之25%、60%及95%乙醇作為溶劑萃取地錦草,以探討其抗氧化與抑制醣類消化酵素之活性並分析其活性成分,再以正常及誘導胰島素阻抗之人類肝癌細胞 (HepG2) 模型評估地錦草萃取物對細胞葡萄糖攝取之潛力,並藉由西方墨點法觀察其蛋白質表現以瞭解其刺激葡萄糖攝取之傳訊路徑。結果顯示,地錦草60%乙醇萃取物 (E60E) 具有最高總酚及總類黃酮含量 (65.14與10.48 mg/g),而經由HPLC鑑定地錦草萃取物含山奈酚、沒食子酸、槲皮素、兒茶素及咖啡酸等活性成分。抗氧化試驗包含DPPH清除能力、總抗氧化能力 (TEAC)、還原能力及三價鐵還原抗氧化能力 (FRAP),整體而言以E60E表達最佳抗氧化活性且能力媲美於標準品Trolox與BHA。抑制α-amylase及α-glucosidase方面,兩者皆以E60E具最佳之抑制效果,其抑制率分別為81.3%與96.47%,其餘三者則皆分別達70%及58%以上,顯示地錦草對醣類消化酵素具良好之抑制效果。以MTT細胞存活率試驗評估地錦草萃取物之毒性,結果顯示,四種不同溶劑之萃取物於濃度50-250 ppm時,其細胞存活率皆達90%以上。體外模擬葡萄糖攝取方面,地錦草萃取物皆具刺激正常及胰島素阻抗之HepG2攝取2-NBDG葡萄糖擬似物之能力,並以E60E具最佳效果,為控制組1.31-1.68倍,且與胰島素具協同作用,表明地錦草具有改善胰島素阻抗潛力。經西方墨點法分析,地錦草萃取物可透過激活胰島素傳訊路徑 (IRS-1、PI3K及Akt) 與脂聯素傳訊路徑 (AMPK) 之關鍵調控因子,以增加葡萄糖轉運蛋白 (GLUT-2與GLUT-4) 表現量,進而促進細胞攝取葡萄糖。綜合上述,以60%乙醇為最佳萃取地錦草之溶劑且具極佳抗氧化及抑制醣類消化酵素活性,並能夠藉由PI3K/Akt與AMPK傳訊路徑增加其攝取葡萄糖之能力,未來可開發為天然延緩衰老與血糖調節之保健食品或輔助藥物。

    Diabetes mellitus has spread all over the world, but the types of drugs currently used to treat diabetes are limited and have many side effects. Therefore, in recent years, many scholars have been striving to study Chinese herbal medicines. Their natural side effects are low and rich in a variety of potential bioactivities. They are widely used in the prevention and treatment of diabetes. Euphorbia humifusa, belongs to Euphorbiaceae plants, is commonly used for traditional Chinese medicine, with a variety of pharmacological effects, such as antibacterial, anti-tumor and so on. In the current experiment, Euphorbia humifusa was extracted with hot water and at different concentrations of 25%,60% and 95% ethanol. The extract was investigated in antioxidant and inhibitory effect on starch degradation enzymes, follow by analyzing its active ingredients, and Euphorbia humifusa extracts was evaluated its cellular glucose uptake in normal and induced insulin resistance Human Hepatoma Cells (HepG2) models. By observing protein expression using Western blotting to understand its signaling pathways that stimulate glucose uptake. The results showed that the highest total phenolic and total flavonoid contents (65.14 and 10.48 mg/g) were found at 60% ethanol extract (E60E). Active ingredients such as kaempferol, gallic acid, quercetin, catechin, and caffeic acid were verified by HPLC in Euphorbia humifusa. Antioxidative tests for different extracts including DPPH scavenging capacity, TEAC, reducing power, and FRAP were conducted. Overall, E60E expressed the best antioxidant activity and was comparable to those of standard Trolox and BHA. The best inhibitory activity of E60E on α-amylase and α-glucosidase were 81.3% and 96.47% respectively, indicating that Euphorbia humifusa showed obvious inhibitory effect on starch degradation enzymes. The MTT cell viability assay was employed to evaluate the toxicity of Euphorbia humifusa extracts and the results indicated that the cell viability was up to 90% at 50-250 ppm concentration of different extracts. In vitro simulation of glucose uptake test, all extracts demonstrated the ability to stimulate normal and insulin resistance HepG2 that can uptake 2-NBDG which is similar to glucose. E60E also exhibited the best activity comparing to control group, 1.31-1.68 times, and a synergistic effect with insulin was observed. This data indicating that Euphorbia humifusa showed the potentiality to improve insulin resistance. Based on preliminary analysis of Western blotting, Euphorbia humifusa extracts can increase the expression of insulin-transport related factors (IRS-1,PI3K and Akt) and adiponectin signaling pathway (AMPK), increasing the amount of glucose transporter (GLUT-2 and GLUT-4), and promote cell to uptake glucose. Conclusively, the best antioxidant activity and inhibition of starch degradation enzymes activity by using 60% ethanol solvent for extracting bioactive compounds from Euphorbia humifusa was found. Furthermore, the increase of glucose uptake through PI3K/Akt and AMPK signaling pathways was also illustrated under specified conditions. Confidently, Euphorbia humifusa can be developed as a naturally functional food in anti-aging and glycemic regulation.

    摘要 I
    Abstract III
    誌謝 V
    目錄 VI
    圖目錄 IX
    表目錄 XI
    第一章 前言 1
    第二章 文獻回顧 3
    2.1 糖尿病概述 3
    2.1.1 糖尿病定義 6
    2.1.2 糖尿病的診斷標準 8
    2.1.3 糖尿病的分類 10
    2.1.4 糖尿病之症狀 14
    2.1.5 糖尿病所引起的併發症 15
    2.1.6 糖尿病的治療 19
    2.2 胰島素 (Insulin) 20
    2.2.1 胰島素分泌 20
    2.2.2 胰島素作用與血糖之維持恆定 23
    2.2.3 胰島素之傳訊路徑 25
    2.3 脂聯素 (adiponectin) 31
    2.3.1 腺苷單磷酸活化蛋白激酶 (AMPK) 32
    2.4 高血糖與醣類消化酵素 36
    2.4.1 α-澱粉酶 (α-amylase) 36
    2.4.2 α-葡萄糖苷酶 (α-glucosidase) 36
    2.5 高血糖與氧化壓力 37
    2.6 抗氧化 37
    2.6.1 自由基 (free radicals) 37
    2.6.2 活性氧 (reactive oxygen species, ROS) 38
    2.6.3 自由基與活性氧之形成 39
    2.7 地錦草 (Euphorbia humifusa) 41
    2.7.1 地錦草 (Euphorbia humifusa) 之特徵 41
    第三章 材料與方法 43
    3.1 實驗架構與設計 43
    3.2 實驗材料 46
    3.3 儀器設備 48
    3.4 實驗方法 50
    3.4.1 地錦草粗萃物製備 50
    3.4.2 抗氧化成分含量測定 50
    3.4.2.1 總酚類化合物含量測定 50
    3.4.2.2 類黃酮化合物含量測定 51
    3.4.3 抗氧化能力測定 52
    3.4.3.1 DPPH自由基清除能力測定 52
    3.4.3.2 總抗氧化能力測定 ( TEAC ) 53
    3.4.3.3 還原能力測定 55
    3.4.3.4 三價鐵還原抗氧化能力測定 (Ferric Reducing Antioxidant Power assay, FRAP assay) 55
    3.4.4 抑制醣類消化酵素測定 57
    3.4.4.1 α-amylase 酵素活性抑制 57
    3.4.4.2 α-glucosidase 酵素活性抑制 59
    3.4.5 高效液相層析儀 (HPLC) 之成分分析 60
    3.4.6 細胞試驗 62
    3.4.6.1 細胞培養 62
    3.4.6.2 細胞存活率試驗 (MTT assay) 64
    3.4.6.3 誘導HepG2細胞之胰島素阻抗 (IR) 模型建立 65
    3.4.6.4 葡萄糖擬似物攝取測定 (glucose uptake) 65
    3.4.6.5 西方墨點法 (Western blot) 67
    3.4.7 統計分析 70
    第四章 結果與討論 71
    4.1 地錦草之萃取率 71
    4.2 抗氧化成分含量測定 73
    4.2.1 總酚含量測定 73
    4.2.2 類黃酮含量測定 74
    4.3 地錦草粗萃物之抗氧化活性測定 77
    4.3.1 DPPH自由基清除能力 77
    4.3.2 總抗氧化能力 (TEAC) 78
    4.3.3 還原能力 79
    4.3.4 三價鐵還原抗氧化能力測定 (FRAP) 80
    4.4 醣類消化酵素活性抑制分析 87
    4.4.1 α-amylase酵素活性抑制 87
    4.4.2 α-glucosidase酵素活性抑制 88
    4.5 地錦草成分分析 93
    4.5.1 地錦草相關有效成分之鑑定 93
    4.5.2 地錦草成分定量 94
    4.5 細胞試驗 102
    4.6.1 細胞存活率試驗 102
    4.6.2 地錦草萃取物調節細胞之葡萄糖攝取潛力 110
    4.6.3 地錦草萃取物刺激葡萄糖攝取潛力之作用機制 117
    第五章 結論 127
    第六章 參考文獻 129
    作者簡歷 148

    王瑄閔。2011。甘草中具醣解酵素抑制活性萃取物及純化物質之調節血糖恆定作用。東海大學食品科學系碩士論文。
    本田。2004。糖尿病診斷療法。信宏出版社。
    朱燕華。2011。飲食與代謝症候群之相關性。食品工業 43(6):1-9。
    行政院衛生福利部統計處。2016。國人十大死因統計,檢自「衛生福利部統計網站」: https://www.mohw.gov.tw/cp-16-33598-1.html。
    吳青蓉。2011。黃金耳酸性多醣對FL83B小鼠肝細胞具胰島素增敏功效。東海大學食品科學所碩士論文。
    吳聲怡。2012。乳酸菌對糖尿病併發症的影響。中華醫事科技大學生物醫學研究所碩士論文。
    沈德昌、顏兆熊。2008。第2型糖尿病藥物治療新知。台灣醫界 51: 11。
    林永賓。2016。蕗蕎抗氧化活性與降血脂效果之研究。大葉大學生物產業科技學系博士論文。
    林宏達。2003。認識糖尿病。台灣糖尿病協會。
    林展碩。2015。佛手瓜苗 (龍鬚菜) 水萃液特性分析及調節血糖之探討。國立屏東科技大學食品科學系碩士論文。
    美國糖尿病學會 (American Diabetes Association)。2018。糖尿病診斷。檢自網: http://www.diabetes.org/diabetes /diagnosis / Loc=db-slabnav。
    國際糖尿病聯合會 (International Diabetes Federation)。2015。全球糖尿病患者分布及預估。檢自站:https://www.idf.org/ our- network. html。
    張文昌。2010。食用桃金孃科植物萃取物減輕小鼠肝細胞 (FL83B) 胰島素阻抗之探討。台灣大學食品科技研究所碩士論文。
    張玉娟。2009。雙腎草根水萃物血糖調節及安全性之探討。國立屏東科技大學食品科學系碩士論文。
    陳柏翰。2014。微波萃取茯苓固態發酵產物中粗三萜及其降血糖效果之研究。國立宜蘭大學食品科學系碩士論文。
    陳紀樺。2002。血糖調節機制及功效評估。食品工業 34(6): 2-17。
    陳皓翔。2017。以血管平滑肌細胞模式探討SIRT1和Ax1在肥胖造成心血管疾病之角色。國防醫學院生物化學研究所碩士論文。
    曾郁茹。2017。地錦草複方乙醇萃取物之有效成份鑑定及血糖調節評估。國立屏東科技大學食品科學系碩士論文。
    游添傑。2017。穿心蓮內酯降低排酸調節蛋白NHE1之活性誘導人類子宮頸癌細胞凋亡。國防醫學院藥理學研究所碩士論文。
    黃智揚。2014。雞腿菇萃取物與其水解產物之抑制人類肝癌細胞HepG2及抗氧化活性之探討。國立屏東科技大學食品科學系碩士論文。
    敬靜。2015。地錦草醇提工藝的研究。醫藥前沿。
    楊恆叡。2013。沒食子酸 (Gallic acid) 對高果糖飼料誘導高血糖大鼠血糖及脂質代謝之影響。國立臺灣師範大學人類發展與家庭學系碩士論文。
    褚小蘭、曹嵐。2000。5種地錦草的種子型態電鏡掃描比較。時珍國醫國藥 11(8): 707。
    趙文婉、張珍田、周淑姿。2002。淺談植物類化學物質對抗自由基之機制。食品工業 34(2) : 49-59。
    劉火平、歐陽松山。2012。不同產地不同季節地錦草有效部位多酚類化合物含量的比較性研究。中醫臨床研究 9: 25-26。
    劉育伶。2014。台灣產筋骨草屬植物降血糖功能及其活性成分之研究。大葉大學藥用植物與保健學系碩士論文。
    鄭巧、楊二磊、朱影、屠洁。2017。地錦草提取物對體外α-葡萄糖苷酶抑制及抗氧化活性研究。中成藥 2: 252-257。
    蕭匡智、李文欽、黃忠餘、張舜智、許君碩。2013。糖尿病腎病變。腎臟與透析 25(1):31-34。
    賴美淑、邱淑媞。2002。糖尿病共同照護之概念與內涵。台灣醫學6(4): 560-568。
    羅婉瑜。2015。地錦草複方水萃物對Wistar糖尿病鼠之血糖調節影響及其安全性評估。國立屏東科技大學食品科學系碩士論文。
    譚秀芳、李曉瑾、王強、石明輝、楊杰。2011。維吾爾藥材地錦草HPLC指紋圖譜的研究。中國野生植物資源 3: 47-50。
    龔千鋒。2008。地錦草的研究概況。江西中醫藥大學學 4: 78-80。
    Accili D., Drago J., Lee E., Johnson M., Cool M., Salvatore P., Asico L., Jose P., Taylor S., Westphal H., 1996. Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nature Genetics. 12: 106-109.
    Ali H., Houghton P. J., Soumyanath A., 2006. α-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. Journal of Ethnopharmacology. 107: 449-455.
    Alonso A. J., Miranda A. C., Gonzalez M. M., Salazar L. A., 2008. Cecropia obtusifolia Bertol and its active compound, chlorogenic acid, stimulate 2-NBD glucose uptake in both insulin-sensitive and insulin-resistant 3T3 adipocytes. Journal of Ethnopharmacology. 120: 458-464
    Aquino A., Jorge J., Terenzi, Polizeli M., 2003. Studies on a thermostable α-amylase from the thermophilic fungus Scytalidium Thermophilum. Applied microbiology and biotechnology. 61: 323-328.
    Arita Y., Kihara S., Ouchi N., Takahashi M., Maeda K., Miyagawa J., Hotta K., Shimomura I., Nakamura T., Miyaoka K., Kuriyama H., Nishida M., Yamashita S., Okubo K., Matsubara K., Muraguchi M., Ohmoto Y., Funahashi T., Matsuzawa Y., 1999. Paradoxical decrease of an adiposespecific protein, adiponectin, in obesity. Biochemical and Biophysical Research Communications. 257: 79-83.
    Aruoma O. I., 2003. Methodological considerations for characterizing potential antioxidant action of bioactive components in plant foods. Mutation research. 523: 9-20.
    Asano N., Nishida M., Kizu H., 1997. Fagomine isomers and glycosidase from Xanthocercis zambesiaca. Journal of Natural Products. 60(3): 98-102.
    Benzie I. F., Strain J. J., 1996. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power : The FRAP assay. Analytical Biochemistry. 239 (1): 70-76.
    Berti L., Kellerer M., Capp E., Haring H., 1997. Leptin stimulates glucose transport and glycogen synthesis in C2C12 myotubes: evidence for a PI3-Kinase mediated effect. Diabetes. 40: 606-609.
    Bessesen, D. H., 2001. The role of ascorbate in antioxidant protection of biomembranes: interaction with vitamin E and coenzyme Q. Journal of Bioenergetics and Biomembranes. 26(4): 349-358.
    Bhandari, M.R., Jong, Hong G., Kawabata J., 2008. α-glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliate). Food Chemistry. 106: 247-252.
    Bobbert T., Rochlitz H., Wegewitz U., Akpulat S., Mai K., Weickert M., Mohlig M., Pfeiffer A., Spranger J., 2005. Changes of adiponectin   oligomer composition by moderate weight reduction. Diabetes. 54 : 2712 -2719.
    Bruun J., Lihn A., Verdich C., Pedersen S., Toubro S., Astrup A., Richelsen B., 2003. Regulation of adiponectin by adipose tissue-derived cytokines: in vivo and in vitro investigations in humans. American Journal of Physiology-Endocrinology and Metabolism. 285: 527-533.
    Cai D., Dhe-Paganon S., Melendez P., Lee J., Shoelson S., 2003. Two new substrates in insulin signaling, IRS5/DOK4 and IRS6/DOK5. Journal of Biological Chemistry. 278: 25325-25330.
    Cazarolli L. H., Zanatta L., Alberton E. H., Figueiredo M. S., Folador P., Damazio R. G., Pizzolatti M. G., Silva F. R., 2008. Flavonoids: prospective drug candidates. Mini-Reviews in Medicinal Chemistry. 8 (13): 1429-1440.
    Chen S., Zhao Z., Ke L., Li Z., Li W., Zhang Z., Zhou Y., Feng X., Zhu W., 2018. Resveratrol improves glucose uptake in insulin-resistant adipocytes via Sirt1. The Journal of Nutritional Biochemistry. 55: 209-218.
    Cho H., Thorvaldsen J., Chu Q., Feng F., Birnbaum M., 2001. Akt/PKB is required for normal growth but dispensable for maintenance of glucose. Journal of Biological Chemistry. 276:38349-38352.
    Christudas S., Gopalakrishnan L., Mohanraj P., Agastian P., 2009. α-Glucosidase inhibitory and antidiabetic activities of ethanolic extract of Pisonia alba Span. Leaves. International Journal of Integrative Biology. 6: 41-45.
    Cichy S., Uddin S., Danikovich A., Guo S., Klippel A., Unterman T., 1998. Protein kinase B/Akt mediates effect of insulin on hepatic insulin-like growth factor-binding protein-1 gene expression through a conserved insulin response sequence. Journal of Biological Chemistry. 273: 6482-6487.
    Crawford, J. M., Cotran, R. S., Kumar, V., Collins, 1999. The pancreas. Pathologic basis of disease. 6:20.
    Davis, T. M., Millns, H., Stratton, I. M., Holman, R. R., Turner, R.C., 1999. Risk factors for stroke in type 2 diabetes mellitus: United Kingdom Prospective Diabetes Study (UKPDS) 29. Archives of Internal Medicine. 159(10):1097-1103.
    Deng F., Tang N., Xu J., Shi Y. H., Zhao M., Zhang J. S., 2008. New α-pyrrolidinonoids and glycosides from Euphorbia humifusa. Journal of Asian Natural Products Research. 10 (6): 531-539.
    Diez J., Jglesias P., 2003. The role of the novel adipocyte-derived hormone adiponectin in human disease. European Journal of Endocrinology. 148: 293-300.
    Dong F. L., Ji B., Chen Y. Q., 2002. Clinical study on hypoglycemic effects of Niaobusu and Euphorbia humifusa. Journal of Sichuan of Traditional Chinese Medicine. 20: 24-25.
    Dong P., Zhou P., Guo L. F., 1998. Effects of Euphobial humifusa willd on platelets count aggregation and blood lipids in rat. Chinese Journal of Integrative Medicine. 18: 330-332.
    Douen A., Ramial T., Rastogi S., Bilan P., Cartee G., Vranic M., Holloszy J., Klip A., 1990. Exercise induces recruitment of the “insulin-responsive glucose transporter” Evidence for distinct intracellular insulin and exercise-recruitable transporter pools in skeletal muscle. Journal of Biological Chemistry. 265:13427-13430.
    Dyer D. G., Dunn J. A., Thorpe S. R., Bailie K. E., Lyons T. J., McCance D. R., Baynes J. W., 1993. Accumulation of Maillard reaction products in skin collagen in diabetes and aging. Journal of Clinical Investigation. 91(6): 2463.
    Eriksson, J. W., 2007. Metabolic stress in insulin’s target cells leads to ROS accumulation-A hypothetical common pathway causing insulin resistance. FEBS Letters. 581: 3734-3742.
    Fang X. K., Gao J., Zhu D. N., 2008. Kaempferol and quercetin isolated from Euonymus alatus improve glucose uptake of 3T3-L1 cells without adipogenesis activity. Life Sciences. 82: 615-622.
    Fisher S., Kahn C., 2003. Insulin signaling is required for insulin’s direct and indirect action on hepatic glucose production. Journal of Clinical Investigation. 111: 463-468.
    Fong, D. S., Aiello, L., Gardner, T. W., King, G. L., Blankenship, G., Cavallerano, J. D., Klein., R., 2004. Retinopathy in diabetes. Diabetes Care. 27: 84-87.
    Franco, O.L., Rigden, Melo, Grossi D.S., 2002. Plant α-amylase inhibitors and their interaction with insect α-amylases. European Journal of Biochemistr. 269: 397-412.
    Ganugapati, Jayasree, Mukkavalli, Sirisha, Sahithi A., 2011. Docking studies of green tea flavonoids as insulin mimetics. International Journal of Computers and Their Applications. 30 : 48-51.
    Gao S., Sun D., Wang G., Zhang J., Jiang Y., Li G., Zhang K., Wang L., Huang J., Chen L., 2016. Growth inhibitory effect of paratocarpin E, a prenylated chalcone isolated from Euphorbia humifusa Wild., by induction of autophagy and apoptosis in human breast cancer cells. Bioorganic Chemistry. 69: 121-128.
    Green K., Brand M. D., Murphy M. P., 2004. Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes. Diabetes. 53: 110-118.
    Gutteridge J. M., Halliwell B., 1989. Iron toxicity and oxygen radical. Baillieres Clin Haematol. 2(2): 195-256.
    Halliwell B., 2009. Oxidants and the central nervous system: some fundamental questions. Is oxidant damage relevant to Parkinson’s disease, Alzhenmimer’s disease, traumatic injury or stroke. Acta Neurological Scandinavica. 80: 23-33.
    Halliwell B., Gutteridhe, Cross C. E., 1992. Free radical, antioxidans, and human disease: Where are we now? J. Lab. Clinical Medicine. 119: 598-620.
    Hardie D. G., Garling D., 1997. The AMP-activated protein kinase fuel gauge of the mammalian cell. European Journal of Biochemistry. 246: 259-273.
    Hartell N., Archer H., Bailey C., 2005. Insulin-stimulated endothelial mitric oxide release is calcium independent and mediated via protein kinase B. Biochem Pharmacol. 69: 781-790.
    Hsu B. Y., Pan S.Y., Wu L. Y., Ho C. T., Hwang L. S., 2018. Hypoglycemic activity of Chenopodium formosanum Koidz. components using a glucose uptake assay with 3T3-L1 adipocytes. Food Bioscience. 24:9-16.
    Hu E., Liang P., Spiegelman B., 1996. AdipoQ is novel adipose-specific gene dysregulated in obesity. Journal of Biological Chemistry. 271: 10697-10703.
    Huang C. C., Fang J.Y., Wu W. B., Chiang H. S., Wei Y. J., Hung C. F., 2005. Protective effects of (-) epicatechin-3-gallate on UVA-induced damage in HaCaT kerationcytes. Molecular Vision. 296: 473-481.
    Huang D.W., Sheng S. C., Wu S. B., 2009. Effects of Caffeic Acid and Cinnamic Acid on Glucose Uptake in Insulin-Resistant Mouse Hepatocytes. Journal of Agricultural and Food Chemistry. 57(17): 7687-7692.
    Huang Q., Chen L., Teng H., Song H., Wu X., Xu M., 2015. Phenolic compounds ameliorate the glucose uptake in HepG2 cells’ insulin resistance via activating AMPK. Journal of Functional Foods. 19: 487-494.
    Huang S., Czech M., 2007. The GLUT-4 glucose transporter. Cell Metab.5:237-252.
    Inzucchi, S. E., 2002. Oral antihyperglycemic therapy for type 2 diabetes: scientific review. Jama. 287(3): 360-372.
    Isabel C., Maria A. M., Luis G., Sonia R., 2014. Cocoa flavonoids attenuate high glucose-induced insulin signalling blockade and modulate glucose uptake and production in human HepG2 cells. Food and Chemical Toxicology. 64: 10-19.
    Jiang B., Le L., Zhai W., Wan W., Hu K., Yong P., He C., Xu L.,Xiao P., 2016. Protective effects of marein on high glucose-induced glucose metabolic disorder in HepG2 cells. Phytomedicine. 23 (9) : 891-900.
    Johansen J. S., Harris A. K., Rychly D. J., Ergul A., 2005. Oxidative stress and the use of antioxidants in diabetes: Linking basic science to clinical practice. Cardiovase Diabetol. 4: 1-11.
    Katarzyna Z., Brandon F., Jordan M., Evangelia T., 2010. Naringenin, a citrus flavonoid, increases muscle cell glucose uptake via AMPK. Biochemical and Biophysical Research Communications. 398 (2) :178-183.
    Kershaw E., Flier J., 2004. Adipose tissue as an endocrine organ. The Journal of Clinical Endocrinology and Metabolism. 89: 2548-2556.
    Khan B. B., Alquier T., Carling D., Hardie D. G., 2004. AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism. Cell Metabolism. 1: 15-25.
    Kim J., Zisman A., Fillmore J., Peroni O., Kotani K., Perret P., Zong H., Dong J., Kahn C., Kahn B., Shulman G., 2001. Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT-4. Journal of Clinical Investigation. 108: 153-160.
    Kimura K., Lee J. H., Lee I. S., Lee H. S., Park K. H., Chiba S., Kim D. M., 2004. Two protein competitive inhibitor discriminating alpha - glucosidase family I from family II. Carbohydrate Reseach. 339: 1035-1040.
    Leturque A., Loizeau M., Vaulont S., Salminen M., Girard J., 1996. Improvement of insulin action in diabetic transgenic mice selectively overexpressing GLUT-4 in skeletal muscle. Diabetes. 45: 23-27.
    Lihn A. S., Jessen N., Pedersen S. B., Lund S., Richelsen B., 2004. AICAR stimulates adiponectin and inhibits cytokines in adipose tissue. Biochemical and Biophysical Research Communications. 316: 853-858.
    Lin C. L., Huang H. C., Lin J. K., 2007. The aflavins attenuate hepatic lipid accumulation through activating AMPK in human HepG2 cells. Journal of Lipid Research, 48, 2334–2343.
    Liu R. H., Kong L. Y., 2005. Lipid constituents from Euphorbia humifusa Willd. Natural Product Research and Development. 17: 437-439.
    Liu Z. Q., Liu T., Chen C., Li M. Y., Wang Z. Y., Chen R. S., Wei G. X., Wang X. Y., Luo D. Q., 2015. Fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anto-diabetic effect in diabetic KKAy mice. Toxicology and Appliced Pharmacology. 285: 61-70 .
    Lochhead P. A., Salt I. P., Walker K. S., Hardie D. G., Sutherland C., 2000. 5-aminoimidazole-4-carboxamide riboside mimies the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase. Diabetes. 49: 896-903.
    Long Y. C., Zierath J.R., 2006. AMP-activated protein kinase signaling in metabolic regulation. The Journal of Clinical Investigation. 116: 1776-1783.
    Luyen B. T. , Tai B. H., Thao N. P., Eun K. J., Cha J. Y., Xin M. J., Lee Y. M., Kim Y. H., 2014. Anti-inflammatory components of Euphorbia humifusa Willd. Bioorganic and Medicinal Chemistry Letters. 24: 1895-1900.
    Margolis, D. J., Allen, L., Hoffstad, O., Berlin, J.A., 2005. Diabetic neuropathic foot ulcers and amputation. Wound Repair Regen. 13(3):230-236.
    Marjan N., Fatemehsadat A., Ali A. S. Y.,Farnoosh S., Yas K., Loghman S., Monireh S. S.,Maryam M., 2017. Does Resveratrol Improve Insulin Signalling in HepG2 Cells? Canadian Journal of Diabetes. 41: 211-216.
    Matejkova O., Mustard K. J., Sponarova J., Flashs P., Rossmeisl M., Miksik,. 2004. Possible involvement of AMP-activated protein kinase in obesity resistance induced by respiratory uncoupling in white fat. FEBS Lett. 569: 245-248.
    Matschinsky F., 1990. Perspectives in Diabetes: Glucokinase as glucose sensor and metabolic signal generator in pancreatic β-cells and hepatocytes. Diabetes. 39: 647-652.
    Maxwell L., Gavin J., 1992. Anti-oxidant therapy improves microvascular ultrastructure and perfusion in postischemic myocardium. Microvascular Research. 43(3): 255-266.
    Meir S. J., Kanner B.,Akiri S., 1995. Determination and involvement of aqueous reducing compounds in oxidative defense 100 systems of various sencescing leaves. Journal of Agicultural and Food Chemistry. 43 : 1813-1817.
    Milan G., Granzotto M., Scarda A., Caleagno A., Pagano C., Federspil G., Vettor R., 2002. Resistin and adiponectin expression in visceral fat of obese rats: effect of weight loss. Obesity research. 10: 1095-1103.
    Miller D. M., Buettner G. R., Aust S. D., 1990. Transition metals as catalysts of “autoxidation” reactions. Free Radical Biology and Medicine. 8: 95-108.
    Moller, D. E., 2001. New drug targets for type 2diabetes and the metabolic syndrome. Nature. 414:821-827.
    Mokashi P., Khanna A., Pandita N., 2017. Flavonoids from Enicostema littorale blume enhances glucose uptake of cells in insulin resistant human liver cancer (HepG2) cell line via IRS-1/PI3K/Akt pathway. Biomedicine & Pharmacotherapy. 90: 268-277.
    Morrish, N. J., Wang, S. L., Stevens, L. K., Fuller, J. H., Keen, H., 2001. Mortality and causes of death in the WHO Multinational Study of Vascular Disease in Diabetes. Diabetologia. 44: 14-21.
    Nordlie, R. C., Fostem, J.D., 1999. Regulation of glucose production by the liver. Annurev. Nuture. 19: 379-406.
    Ong K., Hsu A., Tan B., 2013. Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by AMPK activation. Biochem Pharmacol. 85:1341-1351.
    Oyaizu, M. 1986. Studies on products of browning reaction: Antioxidative activities of products of browning reaction prepared from glucosamime. Japanese Journal of Nutrition. 44: 307 – 315.
    Pasaoglu H., Sancak B., Bukan N., 2004. Lipid peroxidation and resistance to oxidation in patients with type 2 diabetes mellitus. The Tohoku Journal of Experimental Medicine. 203: 211-8.
    Picchi A., Capobianco S., Qiu T., Focardi M., Zou X., Cao J. M., Zhang C., 2010. Coronary microvascular dysfunction in diabetes mellitus: A Review. World Journal of Cardiology. 2: 377-390.
    Pineiro R., Iglesias M., Gallego R., Raghay K., Eiras S., Rubio J., Dieguez C., Gualillo O., Gonzalez J. R., Lago F., 2005. Adiponectin is synthesized and secreted by human and murine cardiomyocytes. FEBS Lett. 579: 5163-5169.
    Pinkney, J., Tomlinson, J., Stenhouse, E., 2012. Overview of Type 2 Diabetes. Clinical Chemistry. 45: 15-17.
    Pinnell S. R., 2003. Cutaneous photodamage oxidative stress, and topical antioxidant protection. Journal of the American Academy of Dermatology. 48(1): 1-19.
    Poitout, V., Roberson, R. P., 2002. Minireview: Secondary beta-cell failure in type 2 diabetes—a convergence of glucotoxicity and lipotoxicity. Endocrinology. 143(2): 339-342.
    Pongsak R., Parichat P., 2007. Bacteriostatic effect of flavonoids isolated from leaves of Psodum guajava on fish pathogens. Fitoterapia. 78: 434-436.
    Prentki M., Nolan C. J., 2006. Islet beta cell failure in type 2 diabetes. Journal of Clinical Investigation. 116(7): 1802-1812.
    Puls W., Keup U., Krause H. P., Thomas G., Hoffmeister F., 1997.Glucosidase  inhibition: A new approach to the treatment of diabetes, obesity, and hyperlipoproteinaemia. Naturewissenshaften. 64: 536-537.
    Putnam, A. L., Brusko, T. M., Lee, M. R., Liu, W., Szot, G. L., Ghosh, T., Atkinson, M. A., Bluestone, J. A., 2009. Expansion human regulatory T-cell from patients with type 1 diabetes. Diabetes.58(3): 652-662.
    Rahimi R., Nikfar S., Larijani B., Abdollahi M., 2005. A review on the role of antioxidants in the management of diabetes and its complications. Biomed Pharmacother. 59(7): 365-373.
    Ramachandran, A., Ma, R.C.W., Snehalatha, C., 2010. Diabetes in Asia. The Lancet. 375: 408-416.
    Re R., Pellegrini R., 1999 Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine. 26: 1231-1237.
    Romero A., Ramos E., Ares I., Castellano V., Martinez M., Anadon A., Martinez M. A., 2017. Oxidative stress and gene expression profiling of cell death pathways in alpha-cypermethrin-treated SH-SY5Y cells. Archives Toxicology. 91 (5): 2151-2164.
    Rubin, B.R., Bogan, J. S., 2009. Intracellular Retention and Insulin   -Stimulated Mobilization of GLUT-4 glucose transporters. Vitamins and Hormones. 80: 155-192.
    Rudich A., Tirosh A., Potashnik R., Hemi R., Kanety H., Bashan N., 1998. Prolonged oxidative stress impairs insulin-induced GLUT4 translocation in 3T3-L1 adipocytes. Diabetes. 47: 1562-1569.
    Saltiel A., Pessin J., 2002. Insulin signaling pathways in time and space. Trends Cell Biology. 12: 65-71.
    Saltiel, A. R., Khan, C.R., 2001. Insulin singnaling and the regulation of glucose and lipid metabolism. Nature. 414: 799-806.
    Scalbert A. C., Manach C., Morand C., Remesy, Jimenez L., 2005. Dietary polyphenols and the prevention of diseases. Critical Reviews in Food Science and Nutrition. 45 : 287-306.
    Schinner S., Scherbaum W., Bornstein S., Barthel A., 2005. Molecular mechanisms of insulin resistance. Diabetes Medication. 22: 674-682.
    Shigenaga M. K., Gimeno C. J., Ames B. N., 1989. Urinary 8-hydroxy-2’-deoxyguanosine as a biological marker of in vivo oxidative DNA damage. Proceedings of the National Academy of Sciences of the United States. 86(24): 9697-9701.
    Shimada, S. K., Fujkawa, K., Yahara, K., Nakamura, T., 1992. Antioxidative properties of xanthan on the antioxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry. 40: 945-994.
    Shklyaev S., Aslanidi G., Tennant M., Prima V., Kohlbrenner E., Kroutov V., Campbell-Thompson M., Crawford J., Shek E. W., Scarpace P. J., Zolotukhin S., 2003. Sustained peripheral expression of transgene adiponectin offsets the development of diet-induced obesity in rats. Proceedings of the National Academy of Sciences of the United States. 100: 14217-14222.
    Soong Y. Y., Barlow P. J., 2006. Quantification of gallic acid and ellagic acid from longan (Dimocarpus longan Lour.) seed and mango (Mangifera indica L.) kernel and their effects on antioxidant activity. Food Chemistry. 97: 524-530.
    Spector A., 2000. Oxidative stress and disease. Journal of Ocualr Pharmacology. 6: 193-200.
    Steffes M., Chavers B., Molith M., 2003. Sustained effect of intensive of type 1 diabetes mellitus on development and progression of diabetic nephropathy – The Epidemiology of Diabetes Interventions and Complications (EDIC) study. Jama Journal of American Medicine Association. 290: 2159-2167.
    Tabuchi M., Ozaki M., Tamura A., Yamada N., Ishida T., Hosoda M., Hosono A., 2003. Antidiabetic effect of Lactobacillus G. in streptozotocin - induced diabetic rats. Biosci Biotechem. 67:1421-1424.
    Taga, M. S., Miller, E. E., Pratt, D. E., 1984. Chia seeds as a source of natural lipid antioxidants. Journal of the American Oil Chemists’ Society. 61(5): 928-931.
    Thorens B., Mueckler M., 2009. Glucose transporter in 21st century. American Journal of Physiology-Endocrinology and Metabolism. 298: 141-145.
    Tian Y., Sun L. M., Li B., Liu X. Q., Dong J. X., 2011. New anti-HBV caryophyllane-type sesqiterpenoids from Euphorbia humifusa Willd. Fitoterapia. 82: 251-254.
    Tian Y., Sun L. M., Liu X. Q., Li B., Wang Q., Dong J. X., 2010. Anti-HBV active flavone glucosides from Euphorbia Humifusa Willd. Fitoterapoia. 81 (7): 799-802.
    Tonga D. P., Zhua K. X., Guoa X. N., Penga W., Zhoua H. M., 2017. The enhanced inhibition of water extract of black tea under bakingtreatment on α-amylase and α-glucosidase. International Journal of Biological Macromolecules. 7: 121-126.
    Tsuchida A., Yamauchi T., Ito Y., Hada Y., Maki T., Takekawa S., Kamon J., Kobayashi M., Suzuki R., Hara K., Kubota N., Terauchi Y., Froguel P., Nakae J., Kasuga M., Accili D., Tobe K., Ueki K., Nagai R., Kadowaki T., 2004. Insulin/Foxol pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity. Journal of Biological Chemistry. 279: 30817-30822.
    Ullah F., Afridi A., Rahim F., Khan S., G., Rahman S., 2015. Knowledge of diabetic complications in patients with diabetes mellitus. Journal of Ayub Medical College Abbottabad. 27(2): 360-3.
    Wang N., Zhao J., Liu Q., Diao X., Kong B., 2015. Sulforaphane protects human umbilical vein cells against lipotoxicity by stimulating autophagy via an AMPK-mediated pathway. Journal of Functional Foods. 15: 23-34.
    Wolf A. M., Wolf D., Avila M. A., Moschen A. R., Berasain C., Enrich B., Rumpold H., Tilg H., 2006. Up-regulation of the anti-inflammatory adiponectin in acute liver failure in mice. Journal of Hepatology. 44: 537-543.
    Yamauchi T., Kamon J., Minokoshi Y., Ito Y., Waki H., Uchida S., Yamashita S., Noda M., Kita S., Ueki K., Eto K., Akanuma Y., Froguel P., Foufelle F., 2002. Adiponectin stimulates glucose utilization and fatty acid oxidation by activating AMP-activated protein kinase. Nature Medicine. 8: 1288-1295.
    Yamauchi T., Nio Y., Maki T., Kobayashi M., Takazawa T., Iwabu M., Okada M., Kawamoto S., Kubota N., Kubota T., Ito Y., Kamon J., Tsuchida A., Kumagai K., Kozono H., Hada Y., Ogata H., Tokuyama K., Tsunoda M., Ide T., Murakami K., Awazawa M., Takamoto I., Froguel P., Hara K.,  Tobe K., Nagai R., Ueki K., Kadowaki T., 2007. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and meeting and metabolic actions. Nature Medicine. 13: 332-339.
    Yoshida T., Amakura Y., Liu Y. Z., Okuda T., 1994. Tannins and Related Polyphenols of Euphorbiaceous Plants. XI.Three New Hydrolyzable Tannins and a Polyphenol Glucoside from Euphorbia humifusa. Chemical and Pharmaceutical Bulletin. 42 (9): 1803-1807.
    Yoshioka, Kazuaki, Takahashi, Hirokazu, Homma, Tomoo, Saito, Mikako, Nemoto, Yasushi, Hideaki. 1996. A novel fluorescent derivative of glucose applicable to the assessment of glucose uptake activity of Escherichia coli. Biochimica et Biophysica Acta (BBA)-General Subject. 1289 (1) : 5-9.
    Zdychova J., Komers R., 2005. Emerging role of Akt/ protein kinase B signaling in pathophysiology od diabetes and its complications. Physiological Research. 54:1-16.
    Zhang R., Zhang B., Sun Y., Jia Y., 2009. Preliminarily study on hypotensive effect of Euphorbia maculate. China Medical Herald. 6: 114-115.
    Zhao Z., Dong L., Lin F., 2013. Simultaneous characterization and quantification of flavonoids in Euonymus alatus (Thunb.) Siebold from different origins by HPLC-PAD-MS. Arabian Journal of Chemistry. 6: 206-209.
    Zhou L., Deepa S. S., Etzler J. C., Ryu J., Mao X., Fang Q., Liu D. D., Torres M., Jia W., Lechleiter J. D., Liu F., Dong L.Q., 2009. Adiponectin activiates AMP-activated protein kinase in muscle cells via APPL1/LKB1-dependent and phospholipase Calmodulin - dependent protein kinase kinase-dependent pathways. The Journal of Biological Chemistry. 284: 22426-22435.
    Zierath, J.R., Kawano, Y., 2003. The effect of hyperglycemia on glucose disposal and insulin signal transduction in skeletal muscle. Best Practice and Research: Clinical Endocrinology and Metabolism 17: 385-398.
    Zimmet P., Alberti K. G. M., Shaw J., 2001. Global and societal  implications of the diabetes epidemic. Nature. 414(6865): 782-787.
    Zisman A., Peroni O., Abel E., Michael M., Mauvais-Jarvis F., Lowell B., Wojtaszewski J., Hirshman M., Virkamaki A., Goodyear L., Kahn C., Kahn B., 2000. Targeted disruption of the glucose transporter 4 selectively in muscle cause insulin resistance and glucose intolerance. Nature Medicine. 6:924-928.
    Zou, Chenhui, Wang, Yajie, Shen, Zhufang. 2005. 2-NBDG as a fluorescent indicator for direct glucose uptake measurement. Journal of Biochemical and Biophysical Methods. 64 (3): 207-215.

    下載圖示
    QR CODE