簡易檢索 / 詳目顯示

研究生: 何庭欣
Ho, Ting-Hsin
論文名稱: 建立Bacillus amyloliquefaciens PMB05 之發酵液配方於植物免疫反應與防治番茄青枯病之探討
Study on fermentation liquid formula of Bacillus amyloliquefaciens PMB05 in plant immune response and control efficacy of tomato bacterial wilt
指導教授: 林宜賢
Lin, Yi-Hsien
學位類別: 碩士
Master
系所名稱: 農學院 - 植物醫學系所
Department of Plant Medicine
畢業學年度: 107
語文別: 中文
論文頁數: 72
中文關鍵詞: 番茄青枯病Bacillus amyloliquefaciens PMB05植物免疫PopW發酵培養
外文關鍵詞: tomato bacterial wilt, Bacillus amyloliquefaciens PMB05, plant immunity, PopW, fermentation
DOI URL: http://doi.org/10.6346/THE.NPUST.PM.001.2019.D02
相關次數: 點閱:23下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 由Ralstonia solanacearum所引起之番茄青枯病為番茄生產之重要限制因子,目前仍無推薦藥劑可供防治,應用拮抗微生物之防治策略被視為一種具有潛力的方法,已有多篇研究證實Bacillus spp.對青枯病具有防治效果,這些微生物之防治機制均與拮抗能力及誘導抗病有關。在近來的報導中亦證實利用提升植物免疫之蛋白質對青枯病的防治具有效果,本研究擬篩選可提升植物免疫反應之菌株並分析其處理為青枯病之抗病性。首先,選殖R. solanacearum的PopW蛋白做為植物免疫路徑之誘導物,進一步利用9株Bacillus spp.菌株在PopW共同處理下,評估其於菸草過敏性之分析之影響。其中,僅PMB05菌株顯著提升過敏性反應的發生,在番茄青枯病防治試驗中顯示此菌株可顯著降低青枯病之發生。為了更深入地了解這種抗病性的可能機制,在阿拉伯芥植物中進行了免疫通道抑制劑與PopW誘導的激活化氧產生和癒傷葡聚糖累積之探討。於添加植物NADPH氧化酶抑制劑與鈣離子通道抑制劑結果顯示,PMB05所提升PopW誘導的過敏性反應隨著上述兩種抑制劑添加的濃度增加而下降,且在PMB05與PopW共同處理時,顯示ROS產生與callose累積皆顯著提升。隨後,進一步評估如何應用發酵技術來強化免疫反應訊號,於搖瓶條件下進行發酵配方調整,結果顯示PMBFL-1發酵培養基的配方條件所獲得之發酵液可顯著增強PMB05所提升的免疫反應,且經500倍稀釋後仍能有效減少番茄植株青枯病之發生。綜上所述,本論文證明,Bacillus amyloliquefaciens PMB05為一拮抗微生物可增強植物免疫反應並提升植物對抗青枯病的抗病性。另,本研究亦說明利用植物免疫反應篩選之微生物可應用於植物病害之防治。

    Tomato bacterial wilt caused by Ralstonia solanacearum is an important limiting factor for tomato production, and there is currently no recommended pesticide for control. The use of antagonistic bacterium is seen as a potential approach. Among them, Bacillus spp. has been applied to control bacterial wilt of tomato. However, the possible mechanisms are related to the antagonistic effect and induced resistance. In recent reports, it has been confirmed that the use of proteins that enhance plant immunity has an effect on the control of bacterial wilt. In this study, we attend to screen plant immunity intensifying Bacillus spp strain for further control tomato bacterial wilt. First, the PopW from R. solanacearum was expressed as an elicitor of PAMP-triggered immunity, and 9 Bacillus spp. strains were used to evaluate the effect on tobacco hypersensitive reaction (HR) assay upon PopW treatment. Among them, only the PMB05 strain significantly increased the incidence of HR ratio. This strain was shown to significantly reduce the occurrence of bacterial wilt in the tomato bacterial wilt. To gain a deeper understanding of the possible mechanisms of this disease resistance, we demonstrated that PopW-induced responses intensified by PMB05 were associated with PTI actilation in Arabidopsis plants, including rapid ROS generation and callose deposition. Subsequently, further evaluation of how to adjust the fermentation formula to strengthen the immune response signal, the results show that the PMBFL-1fermentation medium can enhance the PTI-intensification of PMB05. The 500-fold dilution of fermentation liquid was still effective to reduce the occurrence of tomato bacterial wilt. We concluded that Bacillus amyloliquefaciens PMB05 is microorganism that enhances disease resistance against bacterial wilt through intensifying PTI. Moreover, this study indicated that the screening plant immunty intensifying microorganisms to control plant disease is a feasible strategy.

    摘要 I
    Abstract III
    謝誌 V
    目錄 VI
    圖表目錄 VIII
    壹、 前言 1
    貳、 前人研究 3
    一、 青枯病菌 3
    二、 Bacillus spp.之特性及其於生物防治之應用 4
    三、 植物免疫反應 5
    四、 PopW相關研究 6
    參、 材料方法 7
    一、 植物材料 7
    二、 培養基之配置 7
    三、 細菌菌株和培養條件 8
    四、 Bacillus spp.對Ralstonia solanacearum之拮抗測試 8
    五、 popW基因之構築與表現 8
    六、 菸草植株過敏性反應之分析 11
    七、 溫室條件下番茄青枯病防治盆栽實驗設計 12
    八、 阿拉伯芥接種注射DPI與LaCl3觀察HR反應 12
    九、 Bacillus amyloliquefaciens PMB05細菌生長曲線 13
    十、 應用PMBFL基礎發酵液於田間防治番茄青枯病試驗 13
    十一、 植物免疫反應分析 13
    十二、 PMBFL發酵培養基配方調整之搖瓶試驗 14
    十三、 PMBFL-1發酵配方於小型發酵槽培養試驗 16
    十四、 統計分析 16
    肆、 結果 17
    一、 Bacillus spp.對青枯病菌之拮抗測試 17
    二、 青枯病菌popW基因之構築 17
    三、 青枯病菌PopW蛋白之確認與所施用之終濃度分析 17
    四、 Bacillus spp.混合popW蛋白接種菸草植株過敏性反應之分析 18
    五、 施用Bacillus spp.於番茄青枯病的防治 18
    六、 Bacillus amyloliquefaciens PMB05混合PopW蛋白接種於阿拉伯芥葉片之免疫訊號分析 18
    七、 Bacillus amyloliquefaciens PMB05細菌生長曲線 19
    八、 PMBFL基礎發酵液於田間防治番茄青枯病之試驗 19
    九、 搖瓶條件下PMBFL基礎發酵培養基配方之調整 20
    十、 搖瓶培養之PMBFL-1發酵液於溫室條件下番茄青枯病防治試驗 21
    十一、 小型發酵槽培養之PMBFL-1發酵液相關試驗 22
    伍、 討論 23
    陸、 參考文獻 27
    柒、 圖表 35
    捌、 附錄 70
    玖、 作者簡介 72

    1. 王怡馨。2017。應用葉綠素螢光評估 Bacillus amyloliquefaciens 提升阿拉伯芥之植物免疫反應的動態變化。屏東科技大學碩士學位。屏東。69頁。
    2. 車曉曦及李校堃。2010。解澱粉芽孢桿菌 (Bacillus amyloliquefaciens) 的研究進展。北京農業。3: 7-10。
    3. 吳意眉。2016。利用Bacillus spp.防治草莓炭疽病及其機制探討。屏東科技大學碩士學位。屏東。64頁。
    4. 吳雅芳、鄭安秀及林志鴻。2017。番茄青枯病防治實務。臺南區農業專訊。100:19-23。
    5. 陳姿誼。2016。PFLP之磷酸化為強化阿拉伯芥之PTI免疫反應所必需。屏東科技大學碩士學位。屏東。70頁。
    6. 張志堂。2003。培養條件對靈芝多醣生成及性質之影響。東海大學碩士學位。臺中。215頁。
    7. 張俊傑。2016。藉由Bacillus amyloliquefaciens啟動西瓜內源之免疫反應於果斑病之防治。屏東科技大學碩士學位。屏東。56頁。
    8. 覃趙軍、彭立新、竺利波、宋水山、劉軍賢及王桂文。2015。碳源濃度影響微生物PHB合成代謝的單細胞拉曼光譜分析。中國激光。 3:324-332。
    9. 詹子瑢。2014。醬油耐鹽姓酵母菌Zygosaccharomyces rouxii BCRC22499 之工業化最適化培養基探討。中興大學碩士學位。臺中。116頁。
    10. 鄭美英、堵國成、陳堅及倫世儀。2000。pH 值和初始澱粉質量濃度對發酵生產谷氨酰胺轉胺酶的影響。無錫輕工大學學報。19:331-335。
    11. 歐昆鵬及謝和。2008。不同發酵條件對枯草芽孢桿菌產多醣的影響。 貴州大學學報: 自然科學版。25:322-327。
    12. 劉瑩、朱新貴及李學傳。2012。醬油增香用耐鹽酵母的分離及生長特性分析研究。中國釀造。247:111。
    13. Anderson, J. M., and Aro, E.-M. 1994. Grana stacking and protection of photosystem II in thylakoid membranes of higher plant leaves under sustained high irradiance: an hypothesis. Photosynth. Res. 41:315-326.
    14. Baker, K., and Cook, R. J. 1974. Biological control of plant pathogens: WH Freeman and Company.
    15. Cawoy, H., Mariutto, M., Henry, G., Fisher, C., Vasilyeva, N., Thonart, P., Dommes, J., and Ongena, M. 2014. Plant defense stimulation by natural isolates of bacillus depends on efficient surfactin production. Mol. Plant Microbe In. 27: 87-100.
    16. Chen, X. H., Koumoutsi, A., Scholz, R., Eisenreich, A., Schneider, K., Heinemeyer, I., Morgenstern, B., Voss, B., Hess, W. R., Reva, O., Junge, H., Voigt, B., Jungblut, P. R., Vater, J., Sussmuth, R., Liesegang, H., Strittmatter, A., Gottschalk, G., and Borriss, R. 2007. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25: 1007-1014.
    17. Chen, X. H., Scholz, R., Borriss, M., Junge, H., Mogel, G., Kunz, S., and Borriss, R. 2009. Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J. Biotechnol. 140: 38-44.
    18. Chen, Y., Yan, F., Chai, Y., Liu, H., Kolter, R., Losick, R., and Guo, J. H. 2013. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ. Microbiol. 15: 848-864.
    19. Chen, Y. J., Lin, Y. S., and Chung, W. H. 2012. Bacterial wilt of sweet potato caused by Ralstonia solanacearum in Taiwan. J. Gen. Plant Pathol. 78: 80-84.
    20. Chinchilla, D., Bauer, Z., Regenass, M., Boller, T., and Felix, G. 2006. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell. 18: 465-476.
    21. Choudhary, D. K., and Johri, B. N. 2009. Interactions of Bacillus spp. and plants--with special reference to induced systemic resistance (ISR). Microbiol. Res. 164: 493-513.
    22. Chowdhury, S. P., Uhl, J., Grosch, R., Alquéres, S., Pittroff, S., Dietel, K., Schmitt-Kopplin, P., Borriss, R., and Hartmann, A. 2015. Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani. Mol. Plant Microbe In. 28: 984-995.
    23. Collmer, A., and Keen, N. T. 1986. The role of pectic enzymes in plant pathogenesis. Annu. Rev. Phytopathol. 24: 383-409.
    24. Dayakar, B. V., Lin, H.-J., Chen, C.-H., Ger, M.-J., Lee, B.-H., Pai, C.-H., Chow, D., Huang, H.-E., Hwang, S.-Y., and Chung, M.-C. 2003. Ferredoxin from sweet pepper (Capsicum annuum L.) intensifying harpin pss-mediated hypersensitive response shows an enhanced production of active oxygen species (AOS). Plant Mol. Biol. 51: 913-924.
    25. Desikan, R., Clarke, A., Atherfold, P., Hancock, J. T., and Neill, S. J. 1999. Harpin induces mitogen-activated protein kinase activity during defence responses in Arabidopsis thaliana suspension cultures. Planta 210: 97-103.
    26. Dodds, P. N., and Rathjen, J. P. 2010. Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Rev Genet 11: 539.
    27. Etchegaray, A., de Castro Bueno, C., de Melo, I. S., Tsai, S. M., Fiore, M. F., Silva-Stenico, M. E., de Moraes, L. A., and Teschke, O. 2008. Effect of a highly concentrated lipopeptide extract of Bacillus subtilis on fungal and bacterial cells. Arch. Microbiol. 190: 611-622.
    28. Falardeau, J., Wise, C., Novitsky, L., and Avis, T. 2013. Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. J. Chem. Ecol. 39: 869-878.
    29. Fukumoto, J. 1943. Studies on the production of bacterial amylase. I. Isolation of bacteria secreting potent amylases and their distribution. Nippon Nogeikagaku Kaishi 19: 487-503.
    30. Gao, S., Wu, H., Wang, W., Yang, Y., Xie, S., Xie, Y., and Gao, X. 2013. Efficient colonization and harpins mediated enhancement in growth and biocontrol of wilt disease in tomato by Bacillus subtilis. Lett. Appl. Microbiol. 57: 526-533.
    31. Genin, S. 2010. Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum. New Phytol. 187: 920-928.
    32. Gould, G., AND, A. J., and Wrighton, C. 1968. Limitations of the initiation of germination of bacterial spores as a spore control procedure. J. Appl. Bacteriol. 31: 357-366.
    33. Guo, J., Guo, Y., Zhang, L., Qi, H., and Fang, Z. 2001. Screening for biocontrol agents against Ralstonia solanacearum. Chin. J. Biol. Control 17: 101-106.
    34. Huang, C. J., Tsay, J. F., Chang, S. Y., Yang, H. P., Wu, W. S., and Chen, C. Y. 2012. Dimethyl disulfide is an induced systemic resistance elicitor produced by Bacillus cereus C1L. Pest Manage. Sci. 68: 1306-1310.
    35. Huang, J., Wei, Z., Tan, S., Mei, X., Shen, Q., and Xu, Y. 2014. Suppression of bacterial wilt of tomato by bioorganic fertilizer made from the antibacterial compound producing strain Bacillus amyloliquefaciens HR62. J. Agric. Food Chem. 62: 10708-10716.
    36. Jones, J. D., and Dangl, J. L. 2006. The plant immune system. Nature 444: 323-329.
    37. Kelman, A. 1965. Root-to-root spread of Pseudomonas solanacearum. Phytopathology 55: 304-309.
    38. Li, J. G., Cao, J., Sun, F. F., Niu, D. D., Yan, F., Liu, H. X., and Guo, J. H. 2011. Control of Tobacco mosaic virus by PopW as a result of induced resistance in tobacco under greenhouse and field conditions. Phytopathology 101: 1202-1208.
    39. Li, J. G., Liu, H. X., Cao, J., Chen, L. F., Gu, C., Allen, C., and Guo, J. H. 2010. PopW of Ralstonia solanacearum, a new two-domain harpin targeting the plant cell wall. Mol. Plant Pathol. 11: 371-381.
    40. Lin, Y. H., Huang, H. E., Chen, Y. R., Liao, P. L., Chen, C. L., and Feng, T. Y. 2011. C-terminal region of plant ferredoxin-like protein is required to enhance resistance to bacterial disease in Arabidopsis thaliana. Phytopathology 101: 741-749.
    41. Lin, Y. H., Huang, H. E., Wu, F. S., Ger, M. J., Liao, P. L., Chen, Y. R., Tzeng, K. C., and Feng, T. Y. 2010. Plant ferredoxin-like protein (PFLP) outside chloroplast in Arabidopsis enhances disease resistance against bacterial pathogens. Plant Sci. 179: 450-458.
    42. Linzmeier, R., Ho, C. H., Hoang, B. V., and Ganz, T. 1999. A 450-kb contig of defensin genes on human chromosome 8p23. Gene 233: 205-211.
    43. Luna, E., Pastor, V., Robert, J., Flors, V., Mauch-Mani, B., and Ton, J. 2011. Callose deposition: a multifaceted plant defense response. Mol. Plant-Microbe Interact. 24: 183-193.
    44. Makovitzki, A., Viterbo, A., Brotman, Y., Chet, I., and Shai, Y. 2007. Inhibition of fungal and bacterial plant pathogens in vitro and in planta with ultrashort cationic lipopeptides. Appl. Environ. Microbiol. 73: 6629-6636.
    45. Malfanova, N., Franzil, L., Lugtenberg, B., Chebotar, V., and Ongena, M. 2012. Cyclic lipopeptide profile of the plant-beneficial endophytic bacterium Bacillus subtilis HC8. Arch. Microbiol. 194: 893-899.
    46. McCarter, S. 1968. Greenhouse studies on the spread of Pseudomonas solanacearum in tomato plants by clipping. Plant Dis. Rep. 52: 330-334.
    47. Nicaise, V., Roux, M., and Zipfel, C. 2009. Recent advances in PAMP-triggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm. Plant Physiol. 150: 1638-1647.
    48. Nihorimbere, V., Cawoy, H., Seyer, A., Brunelle, A., Thonart, P., and Ongena, M. 2012. Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS Microbiol. Ecol. 79: 176-191.
    49. Ongena, M., and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16: 115-125.
    50. Postel, S., and Kemmerling, B. (2009). Plant systems for recognition of pathogen-associated molecular patterns. Paper presented at the Seminars in cell & developmental biology.
    51. Raaijmakers, J. M., De Bruijn, I., Nybroe, O., and Ongena, M. 2010. Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol. Rev. 34: 1037-1062.
    52. Rahman, A., Uddin, W., and Wenner, N. G. 2015. Induced systemic resistance responses in perennial ryegrass against Magnaporthe oryzae elicited by semi-purified surfactin lipopeptides and live cells of Bacillus amyloliquefaciens. Mol. Plant Pathol. 16: 546-558.
    53. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W., and Pare, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134: 1017-1026.
    54. Santoyo, G., Orozco-Mosqueda, M. d. C., and Govindappa, M. 2012. Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Sci. Technol. 22: 855-872.
    55. Satou, M., Kubota, M., and Nishi, K. 2006. Measurement of horizontal and vertical movement of Ralstonia solanacearum in soil. J. Phytopathol. 154: 592-597.
    56. Singh, D., Yadav, D. K., Chaudhary, G., Rana, V. S., and Sharma, R. K. 2016. Potential of Bacillus amyloliquefaciens for biocontrol of bacterial wilt of tomato incited by Ralstonia solanacearum. J. Plant Pathol. Microbiol. 7: 2.
    57. Su, Y.-H., Hong, C.-Y., and Lin, Y.-H. 2014. Plant ferredoxin-like protein enhances resistance to bacterial soft rot disease through PAMP-triggered immunity in Arabidopsis thaliana. Eur. J. Plant Pathol. 140: 377-384.
    58. Toth, I. K., Bell, K. S., Holeva, M. C., and Birch, P. R. 2003. Soft rot erwiniae: from genes to genomes. Mol. Plant Pathol. 4: 17-30.
    59. Wang, C., Wang, C., Li, H. W., Wei, T., Wang, Y. P., and Liu, H. X. 2016. Overexpression of a harpin-encoding gene popW in tobacco enhances resistance against Ralstonia solanacearum. Biol. Plant. 60: 181-189.
    60. Wang, X., and Liang, G. 2014. Control efficacy of an endophytic Bacillus amyloliquefaciens strain BZ6-1 against peanut bacterial Wilt, Ralstonia solanacearum. BioMed Res. Int. 2014: 465435.
    61. Wei, T., Wang, L., Zhou, X., Ren, X., Dai, X., and Liu, H. 2015. PopW activates PAMP-triggered immunity in controlling tomato bacterial spot disease. Biochem. Biophys. Res. Commun. 463: 746-750.
    62. Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52: 487-511.
    63. Wu, L., Wu, H., Chen, L., Yu, X., Borriss, R., and Gao, X. 2015. Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Sci. Rep. 5: 12975.
    64. Wu, L., Wu, H. J., Qiao, J., Gao, X., and Borriss, R. 2015. Novel Routes for Improving Biocontrol Activity of Bacillus Based Bioinoculants. Front. Microbiol. 6: 1395.
    65. Yip, M. K., Huang, H. E., Ger, M. J., Chiu, S. H., Tsai, Y. C., Lin, C. I., and Feng, T. Y. 2007. Production of soft rot resistant calla lily by expressing a ferredoxin-like protein gene (pflp) in transgenic plants. Plant Cell Rep. 26: 449-457.
    66. Yuan, J., Li, B., Zhang, N., Waseem, R., Shen, Q., and Huang, Q. 2012. Production of bacillomycin- and macrolactin-type antibiotics by Bacillus amyloliquefaciens NJN-6 for suppressing soilborne plant pathogens. J. Agric. Food Chem. 60: 2976-2981.
    67. Zeriouh, H., Romero, D., Garcia-Gutierrez, L., Cazorla, F. M., de Vicente, A., and Perez-Garcia, A. 2011. The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits. Mol. Plant Microbe In. 24: 1540-1552.
    68. Zhao, Y., Selvaraj, J. N., Xing, F., Zhou, L., Wang, Y., Song, H., Tan, X., Sun, L., Sangare, L., Folly, Y. M., and Liu, Y. 2014. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum. PLoS One 9: e92486.
    69. Zhu, Z., Sun, L., Huang, X., Ran, W., and Shen, Q. 2014. Comparison of the kinetics of lipopeptide production by Bacillus amyloliquefaciens XZ-173 in solid-state fermentation under isothermal and non-isothermal conditions. World J. Microbiol. Biotechnol. 30: 1615-1623.
    70. Zhu, Z., Zhang, F., Wei, Z., Ran, W., and Shen, Q. 2013. The usage of rice straw as a major substrate for the production of surfactin by Bacillus amyloliquefaciens XZ-173 in solid-state fermentation. J. Environ. Manage. 127: 96-102.
    71. Zhu, Z., Zhang, G., Luo, Y., Ran, W., and Shen, Q. 2012. Production of lipopeptides by Bacillus amyloliquefaciens XZ-173 in solid state fermentation using soybean flour and rice straw as the substrate. Bioresour. Technol. 112: 254-260.
    72. Zhu, Z., Zhang, J., Wu, Y., Ran, W., and Shen, Q. 2013. Comparative study on the properties of lipopeptide products and expression of biosynthetic genes from Bacillus amyloliquefaciens XZ-173 in liquid fermentation and solid-state fermentation. World J. Microbiol. Biotechnol. 29: 2105-2114.

    下載圖示
    QR CODE