簡易檢索 / 詳目顯示

研究生: 吳佩宜
Wu, Pei-Yi
論文名稱: 利用TiiPCR偵測技術於西瓜果斑病種子檢測之應用
Development of a TaqMan probe-based insulated isothermal PCR (TiiPCR) in seed detection of watermelon fruit blotch
指導教授: 林宜賢
Lin, Yi-Hsien
學位類別: 碩士
Master
系所名稱: 農學院 - 植物醫學系所
Department of Plant Medicine
論文出版年: 107
畢業學年度: 106
語文別: 中文
論文頁數: 78
中文關鍵詞: 細菌性果斑病檢測技術TiiPCR種子偵測
外文關鍵詞: Bacterial fruit blotch., Acidovorax citrulli., Insulated isothermal PCR., TiiPCR, Seed detection.
DOI URL: http://doi.org/10.6346/THE.NPUST.PM.002.2018.D02
相關次數: 點閱:23下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 不公開

    不公開

    摘要 I
    Abstract III
    謝誌 V
    目錄 VI
    圖表目錄 VIII
    壹、 前言 1
    貳、 前人研究 3
    一、西瓜栽培現況 3
    二、細菌性果斑病 4
    三、細菌性果斑病之檢測技術現況 8
    四、TiiPCR(TaqMan probe based iiPCR)之檢測技術及應用 10
    參、 材料方法 12
    一、菌株來源 12
    二、細菌之培養 12
    三、西瓜果斑病菌專一性片段之選殖與定序 12
    四、西瓜果斑病菌之專一性引子和探針之設計 13
    五、帶有專一性DNA片段之質體的純化與定量 14
    六、TiiPCR反應條件之調整 15
    七、利用TiiPCR評估其檢測細菌細胞的靈敏度 16
    八、透過TaqMan probe結合TiiPCR之專一性測試 16
    九、進行PCR與TiiPCR之細菌細胞其偵測極限的比較 16
    十、細菌性果斑病之種子接種 17
    十一、不同培養液對TiiPCR在種子檢測上之影響 17
    十二、帶菌種子之西瓜果斑病菌族群分析 19
    十三、統計分析 19
    肆、 結果 20
    一、西瓜果斑病之田間病徵 20
    二、西瓜果斑病菌專一性片段之增幅與選殖 20
    三、iiPCR專一性引子與螢光探針之設計 20
    四、透過TaqMan probe結合iiPCR進行質體增幅 20
    五、通過TiiPCR進行西瓜果斑病菌細胞之偵測 21
    六、TiiPCR與傳統PCR檢測Acidovorax citrulli於凝膠電泳上靈敏度之差異 22
    七、TiiPCR專一性測試 22
    八、瓜類細菌性果斑病菌帶菌種子培養於不同培養基之基礎下進行TiiPCR測試 22
    (一) 10%帶菌種子之偵測 22
    (二) 5%帶菌種子之偵測 23
    (三) 1%帶菌種子之偵測 24
    九、帶菌種子培養於培養液之培養時間對TiiPCR檢測效果之影響 24
    十、1%帶菌種子上不同Acidovorax citrulli菌量濃度對偵測效果的影響 25
    十一、0.2% 帶果斑病菌種子之檢測效果之評估 25
    十二、0.2% 帶果斑病菌種子培養來源之細胞懸浮液檢測效果評估 25
    十三、種子檢測之SOP流程之建立 26
    伍、 討論 27
    陸、 參考文獻 31
    柒、 圖表 39
    作者簡介 68

    1. 王毓華、鄧汀欽、余志儒。2009。西瓜栽培管理。71:7-15。
    2. 吳國政、方怡丹。2012。臺灣西瓜產業發展現況。農政與農情。242:76-82。
    3. 宋秉峰。1999。鑑定及偵測瓜類細菌性果斑病菌之聚合酵素連鎖反應技術。國立中興大學碩士論文。台中。41頁。
    4. 唐致仁。1997。西瓜細菌性果斑病菌之研究。國立中興大學碩士論文。台中。3頁。
    5. 陳甘澍、洪爭坊。2013。台灣西瓜發展之回顧。西瓜品種、行銷及營養與應用研討會專輯。1-13。
    6. 黃秀珍、胡仲祺、張瑞璋、邱安隆、曾國欽。2013。建立符合國際規範之瓜類種子傳播果斑病菌檢測技術平台。農業生技產業季刊。33: 26-31。
    7. 曾國欽、呂昀陞、鄭安秀、黃德昌、徐世典。2010。近年來我國重大作物病害之發生及其診斷、監測與防治。瓜類細菌性果斑病: 病原菌檢測與病害管理。農業試驗所特刊149號。193-204。
    8. 鄭安秀、許瑛玲、黃德昌和王惠亮。2000。甜瓜對細菌性果斑病菌之感受性及果斑病之防治。植病會刊 9:151-156。
    9. 關政平、吳明哲。2013。西瓜與洋香瓜真菌性病害之鑑定技術。農業生技產業季刊 33:32-34。
    10. 關政平、黃彥華、曾清山、林宗俊和石信德。2014。使用 Real-time PCR檢測引起西瓜蔓枯病菌的方法評估。台灣農業研究。63:151-158。
    11. Andrus, C. F., Seshadri, V. S., and Grimball, P. C. 1971. Production of Seedless Watermelons. Agricultural Research Service, United States Department of Agriculture Technical Bulletin No. 1425.
    12. Atherton, J. G. and Farooque, A. M. 1983. High temperature and germination in spinach. II. Effects of osmotic priming. Sci. Hortic. 19:221-227.
    13. Bahar, O., and Burdman, S. 2010. Bacterial fruit blotch: a threat to the cucurbit industry. ISR. J. Plant Sci. 58:19-31.
    14. Bahar, O., Kritzman, G., and Burdman, S. 2009. Bacterial fruit blotch of melon: screens for disease tolerance and role of seed transmission in pathogenicity. Eur. J. Plant Pathol. 123:71-83.
    15. Block, C. C., and Shepherd, L. M. 2009. Long-term survival and seed transmission of Acidovorax avenae subsp. citrulli in melon and watermelon seed. Phytopathology 99:S119.
    16. Burdman, S., and Walcott, R. O. N. 2012. Acidovorax citrulli: generating basic and applied knowledge to tackle a global threat to the cucurbit industry. Mol. Plant Pathol. 13:805-815.
    17. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T. L. 2009. BMC Bioinformatics 10:421.
    18. Chang, H. F. G., Tsai, Y. L., Tsai, C. F., Lin, C. K., Lee, P. Y., Teng, P. H., and Jeng, C. C. 2012. A thermally baffled device for highly stabilized convective PCR. Biotechnol. J. 7:662-666.
    19. Cho, M. S., Park, D. H., Ahn, T. Y., and Park, D. S. 2015. Rapid and specific detection of Acidovorax avenae subsp. citrulli using SYBR green-based real-time PCR amplification of the YD-repeat protein gene. J. Microbiol. Biotechnol. 25:1401-1409.
    20. Chou, W. P., Chen Jr, P. H., Miao, M., Kuo, L. S., Yeh, S. H., and Chen, P. J. 2011. Rapid DNA amplification in a capillary tube by natural convection with a single isothermal heater. Biotechniques 50:52–57.
    21. Compton, M. E., Gray, D. J. 1993. Somatic embryogenesis and plant regeneration from immature cotyledons of watermelon. Plant Cell Rep. 12:61-65.
    22. Compton, M. E., Gray, D. J. 1999. Shoot organogenesis from cotyledon explants of watermelon. In: Trigiano RN, Gray DJ (Eds). Plant tissue culture concepts and laboratory exercises. CRC Press, Florida. pp. 149-157.
    23. Compton, M. E., Gray, D. J., and Gaba, V. P. 2004. Use of tissue culture and biotechnology for the genetic improvement of watermelon. Plant Cell Tiss. Org. Cult. 77:231-243.
    24. Deng, W. L., Huang, T. C., and Tsai, Y. C. 2010. First report of Acidovorax avenae subsp. citrulli as the causal agent of bacterial leaf blight of betelvine in Taiwan. Plant Dis. 94:1065-1065.
    25. Dutta, B., Avci, U., Hahn, M. G., and Walcott, R. R. 2012a. Location of Acidovorax citrulli in infested watermelon seeds is influenced by the pathway of bacterial ingress. Phytopathology 102:461-8.
    26. Dutta, B., Scherm, H., Gitaitis, R. D., and Walcott, R. R. 2012b. Acidovorax citrulli seed inoculum load affects seedling transmission and spread of bacterial fruit blotch of watermelon under greenhouse conditions. Plant Dis. 96:705-711.
    27. Dutta, B., Gitaitis, R., Smith, S., and Langston, Jr. D. 2014. Interactions of seedborne bacterial pathogens with host and non-host plants in relation to seed infestation and seedling transmission. PloS one 9:e99215.
    28. Eckshtain-Levi, N., Shkedy, D., Gershovits, M., Da Silva, G. M., Tamir-Ariel, D., Walcott, R., Pupko, T., and Burdman, S. 2016. Insights from the genome sequence of Acidovorax citrulli M6, a group I strain of the causal agent of bacterial fruit blotch of cucurbits. Front. Microbial. 7:430.
    29. EPPO. 2017a. PQR - EPPO Database on Quarantine Pests. http://www.eppo.int/DATABASES/pqr/pqr.html.
    30. EPPO. 2017b. EPPO Global Database, Acidovorax citrulli (PSDMAC). https://gd.eppo.int/taxon/PSDMAC.
    31. Fang, Y. Z., Yang, S., and Wu, G. 2002. Free radicals, antioxidants and nutrition. Nutrition 18:872-879.
    32. Feng, J. J., Li, J. Q., Walcott, R. R., Zhang, G. M., Luo, L. X., Kang, L., Zheng, Y., and Schaad, N. W. 2013. Advances in detection of Acidovorax citrulli, the causal agent of bacterial fruit blotch of cucurbits. Seed Sci. Technol. 41:1-15.
    33. Fessehaie, A., and Walcott, R. R. 2005. Biological control to protect watermelon blossoms and seed from infection by Acidovorax avenae subsp. citrulli. Phytopathology 95:413-419.
    34. Frankle, W. G., Hopkins, D. L., and Stall, R. E. 1993. Ingress of the watermelon fruit blotch bacterial diseases. Plant Dis. 77:1090–2.
    35. Giovanardi, D., Sutton, S. A., Stefani, E., and Walcott, R. R. 2017. Factors influencing the detection of Acidovorax citrulli in naturally contaminated cucurbitaceous seeds by PCR-based assays. Seed Sci. Technol. 46:93-106.
    36. Gitaitis, R. D. 1993. Development of a semiselective medium for Acidovorax avenae subsp. citrulli, causal agent of watermelon fruit blotch. Dept. of Plant Pathology, University of Georgia, Coastal Plain Experiment Station, Tifton, GA 31793-0748, USA.
    37. Gitaitis, R. D., and Walcott, R. R. 2007. The epidemiology and management of seedborne bacterial diseases. Annu. Rev. Phytopathol. 45:371-397.
    38. Ha, Y., Fessehaie, A., Ling, K. S., Wechter, W. P., Keinath, A. P., and Walcott, R. R. 2009. Simultaneous detection of Acidovorax avenae subsp. citrulli and Didymella bryoniae in cucurbit seedlots using magnetic capture hybridization and real-time polymerase chain reaction. Phytopathology 99:666-678.
    39. Himananto, O., Thummabenjapone, P., Luxananil, P., Kumpoosiri, M., Hongprayoon, R., Kositratana, W., and Gajanandana, O. 2011. Novel and highly specific monoclonal antibody to Acidovorax citrulli and development of ELISA-based detection in cucurbit leaves and seed. Plant Dis. 95:1172-1178.
    40. Hopkins, D. L. 1991. Control of bacterial fruit blotch of watermelon with cupric hydroxide. Phytopathology 81:1228.
    41. Hopkins, D. L., and Thompson, C. M. 2002. Seed transmission of Acidovorax avenae subsp. citrulli in cucurbits. Hortscience 37:924-926.
    42. Huang, Y. H., Lu, L. Tao, X. L., and Zhao, C. Z. 2006. Establishment of Plant regeneration system for Cucumis melon cv. GT-1. J. Fruit Science 23:740-744.
    43. Innis, M. A., and Gelfand, D. H. 1990. Optimizatioon of PCRs. In: Innis, M. A., Gelfand, D. H., Sninsky, J. J., White, T. J., editors. PCR protocol. San Diego: Academic Press, pp. 3-12.
    44. Isakeit, T., Black, M. C., and Jones, J. B. 1998. Natural infection of citron melon with Acidovorax avenae subsp. citrulli. Plant Dis. 82:351-351.
    45. Jaskani, M. J., Khan, I. A., and Khan, M. M. 2005. Fruit set, seed development and embryo germination in interploid crosses of citrus. Sci. hortic. 107:51-57.
    46. Jiang, C. H., Wu, F., Yu, Z. Y., Xie, P., Ke, H. J., Li, H. W., Yu, Y. Y., and Guo, J. H. 2015. Study on screening and antagonistic mechanisms of Bacillus amyloliquefaciens 54 against bacterial fruit blotch (BFB) caused by Acidovorax avenae subsp. citrulli. Microbiol. Res. 170:95-104.
    47. Khalekuzzaman, M., Khatun, M., Rashid, M. H., Sheikh, M. I., Sharmin, S. A., and Alam, I. 2012. Micropropagation of an elite F1 watermelon (Citrullus lanatus) hybrid from the shoot tip of field grown plants. Braz. Arch. Biol. Techn. 55:335-340.
    48. Kihara, H. 1951. Triploid watermelons. Proc. Am. Soc. Hort. Sci. 58:217-230
    49. Krishnan, M., Ugaz, V. M., and Burns, M. A. 2002. PCR in a Rayleigh-Benard convection cell. Science 298:793-793.
    50. Langston, D. B., Walcott, R. D., Gitaitis, R. D., and Sanders, F. H. 1999. First report of a fruit rot of pumpkin caused by Acidivorax avenae subsp. citrulli in Georgia. Plant Dis. 83:199-199.
    51. Latin, R. X., and Hopkins, D. L. 1995. Bacterial fruit blotch of watermelon: the hypothetical exam question becomes reality. Plant Dis. 79:761-765.
    52. Latin, R.X. and Rane, K.K. 1990. Bacterial fruit blotch of watermelon in Indiana. (Abstr.) Plant Dis. 74:331.
    53. Lee, H., Kim, M. S., Qin, J., Park, E., Song, Y. R., Oh, C. S., and Cho, B. K. 2017. Raman Hyperspectral Imaging for Detection of Watermelon Seeds Infected with Acidovorax citrulli. Sensors 17:2188.
    54. Lucier, G., and Lin, B. H. 2001. Factors affecting watermelon consumption in the United States. In: Anonymous (eds) Vegetables and Specialties: Situation and Outlook, VGS-287 pp. 23-29.
    55. Marr, C. W., and Gast, K. L. B. 1991. Reactions by consumers in a ‘farmers’ market to prices for seedless watermelon and ratings of eating quality. HortTechnology 1:105-106.
    56. Martin, H. L., O'Brien, R. G., and Abbott, D. V. 1999. First report of Acidovorax avenae subsp. citrulli as a pathogen of cucumber. Plant Dis. 83:965-965.
    57. Mustafa, P., A. Cevat, N. Önder, Türkme., and S. Musa. 2010. Modeling of some physical properties of watermelon (Citrullus Lanatus (Thunb.) Mansf.) seeds depending on moisture contents and mineral compositions. Pak. J. Bot. 42:2775-2783.
    58. Nagai, M., Yoshida, A. and Sato, N. 1998. Additive effects of bovineserum albumin, dithiothreitol, and glycerol on PCR. Biochem. Mol. Biol. Int. 44:157–163.
    59. Ojieh, G., Oluba, O., Ogunlowo, Y., Adebisi, K., Eidangbe, G., and Orole, R. 2008. Compositional studies of C. lanatus (Egusi melon) seed. Internet J. Nutr. Wellness 6:2.
    60. Pimentel, D., Hepperly, P., Hanson, J., Douds, D., and Seidel, R. 2005. Environmental, energetic, and economic comparisons of organic and conventional farming systems. A.I.B.S. bull. 55:573–582.
    61. Rader, R., Reilly, J., Bartomeus, I., and Winfree, R. 2013. Native bees buffer the negative impact of climate warming on honey bee pollination of watermelon crops. Glob. Chang. Biol. 19:3103-3110.
    62. Rahman, H., Priyanka, P., Lavanya, T., Srilakshmi, N., and Kumar, P. R. 2013. A review on ethnobotany, phytochemisrty and pharmacology of Citrullus lanatus L. Int. Res. J. Pharm. App. Sci. 3:77-81.
    63. Rane, K., and Latin, R. X. 1992. Bacterial fruit blotch of watermelon:
    association of the pathogen with seed. Plant Dis. 76:509-512.
    64. Rimando, A. M., Perkins-Veazie, P. M. 2005. Determination of citrulline in watermelon rind. J. Chromatogr. A 1078:196-200.
    65. Schaad, N. W., Postnikova, E., and Randhawa, P. 2003. Emergence of Acidovorax avenae subsp. citrulli as a crop-threatening disease of watermelon and melon. Pages 573-581 in: Presentations 6th Int. Conf. Pseudomonas syringae pathovars and related pathogens. N. W. Schaad, ed. Kluwver Press, Maratea, Italy
    66. Schaad, N. W., Postnikova, E., Sechler, A., Claflin, L. E., Vidaver, A. K., Jones, J. B., Agarkova, I., Ignatov, A., Dickstein, E., and Ramundo, B. A. 2008. Reclassification of subspecies of Acidovorax avenae as A. avenae (Manns 1905) emend., A. cattleyae (Pavarino, 1911) comb. nov., A. citrulli (Schaad et al., 1978) comb. nov., and proposal of A. oryzae sp. nov. Syst. appl. microbiol. 31:434-446.
    67. Schaad, N. W., Sowell, G., Goth, R. W., Colwell, R. R., and Webb, R. E. 1978. Pseudomonas pseudoalcaligenes subsp. citrulli subsp. nov. Int. J. Syst. Bacteriol. 28:117-125.
    68. Shang, H., Xie, Y., Zhou, X., Qian, Y., and Wu, J. 2011. Monoclonal antibody-based serological methods for detection of Cucumber green mottle mosaic virus. Virol. J. 8:228-236.
    69. Shirakawa, T., Aizawa, M., Komiya, Y., and Abiko, K. 2000. Development of semiselective medium for isolation and detection of Acidovorax avenae subsp. citrulli from seeds and plant materials. Jpn. J. Phytopathol. 66:132.
    70. Siddiqui, W. A., Shahzad, M., Shabbir, A., and Ahmad, A. 2018. Evaluation of anti-urolithiatic and diuretic activities of watermelon (Citrullus lanatus) using in vivo and in vitro experiments. Biomed. Pharmacother. 97:1212-1221.
    71. Sowell, J. G., and Schaad, N. W. 1979. Pseudomonas pseudoalcaligenes subsp. citrulli on watermelon: seed transmission and resistance of plant introductions. Plant Dis. 63:437-441.
    72. Tsai, Y. L., Lin, Y. C., Chou, P. H., Teng, P. H., and Lee, P. Y. 2012. Detection of white spot syndrome virus by polymerase chain reaction performed under insulated isothermal conditions. J. Virol. Methods 181:134-137.
    73. Tsai, Y. L., Wang, H. C., Lo, C. F., Tang-Nelson, K., Lightner, D., Ou, B. R., Hour, A. L., Tsai, C. F., Yen, C. C., Grace Chang, H. F., Teng, P. H., and Lee, P. Y. 2014. Validation of a commercial insulated isothermal PCR-based POCKIT test for rapid and easy detection of white spot syndrome virus infection in Litopenaeus vannamei. PLoS One 9:e90545.
    74. Tsai, Y. L., Wang, H. T. T., Chang, H. F. G., Tsai, C. F., Lin, C. K., Teng, P. H., Su, C., Jeng, C. C., and Lee, P. Y. 2012. Development of TaqMan probe-based Insulated Isothermal PCR (iiPCR) for sensitive and specific on-site pathogen detection. PLoS One 7:e45278.
    75. Vissani, M. A., Tordoya, M.S., Tsai, Y. L., Lee, P. Y. A., Shen, Y. H., Lee, F. C., Wang, H. T. T., Parreño, V., and Barrandeguy, M. 2018. On-site detection of equid alphaherpesvirus 3 in perineal and genital swabsof mares and stallions. J. Virol. Methods 257:29-32.
    76. Walcott, R. R. 2003. Detection of seedborne pathogens. HortTechnology 13:40-47.
    77. Walcott, R. R. 2005. Bacterial fruit blotch of cucurbits. The Plant Health Instructor. DOI: 10.1094/PHI-I-2005-1025-02.
    78. Walcott, R. R., and Gitaitis, R. D. 2000. Detection of Acidovorax avenae subsp. citrulli in watermelon seed using immunomagnetic separation and the polymerase chain reaction. Plant Dis. 84:470-474.
    79. Wang, X., and Seed, B. 2007. High-throughput primer and probe design. In: Dorak, M. T. ed. Real-time PCR UK, pp. 121-134.
    80. Wang, X., Shang, L., and Luan, F. 2013. A highly efficient regeneration system for watermelon (Citrullus lanatus Thunb.). Pak. J. Bot, 45:145-150.
    81. Webb, R.E., and Goth, R.W. 1965. A seedborne bacterium isolated from watermelon. Plant Dis. Rep. 49:818-821.
    82. Wilkes, R. P., Lee, P. Y. A., Tsai, Y. L., Tsai, C. F., Chang, H. H., Chang, H. F. G., and Wang, H. T. T. 2015. An insulated isothermal PCR method on a field-deployable device for rapid and sensitive detection of canine parvovirus type 2 at points of need. J. Virol. Methods 220:35-38.
    83. Willems, A., Goor, M., Thielemans, S., Gillis, M., Kersters, K., Ley, J. D., and De Ley, J. 1992. Transfer of several phytopathogenic
    Pseudomonas species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov., comb. nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci. Int. J. Syst. Bact. 42:107-119.
    84. Yan, L., Hu, B., Chen, G., Zhao, M., and Walcott, R. R. 2017. Further Evidence of Cucurbit Host Specificity among Acidovorax citrulli Groups Based on a Detached Melon Fruit Pathogenicity Assay. Phytopathology 107:1305-1311.
    85. Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., and Madden, T. L. 2012. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134.
    86. Zeng, H., Zhang, D., Zhai, X., Wang, S., and Liu, Q. 2018. Enhancing the immunofluorescent sensitivity for detection of Acidovorax citrulli using fluorescein isothiocyanate labeled antigen and antibody. Anal. Bioanal. Chem. 410:71-77.
    87. Zhao, X., Niu, X., and Fan, M. 2015. Adventitious shoots induction and plant regeneration from cotyledons of watermelon (Citrullus lanatus L.). Afr. J. Biotechnol. 14: 2202-2210.

    下載圖示
    QR CODE