簡易檢索 / 詳目顯示

研究生: 李建勳
Lee, Jian-Hsun
論文名稱: 手持式微量移液器多波長微流式細胞儀之研究與開發
Research and Development of a Handheld Pipette Based Multi-wavelength Microflow Cytometry
指導教授: 王耀男
Wang, Yao-Nan
學位類別: 碩士
Master
系所名稱: 工學院 - 車輛工程系所
Department of Vehicle Engineering
畢業學年度: 107
語文別: 中文
論文頁數: 53
中文關鍵詞: 微流式細胞儀光訊號傳遞模組螢光粒子檢測及計數
外文關鍵詞: microflow cytometry, optical signal transmission module, fluorescent particle detection and counting
DOI URL: http://doi.org/10.6346/THE.NPUST.VE.002.2019.E07
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 本研究開發一套以手持式移液器(Pipette)與微流道晶片組成的微流式細胞儀(Microflow cytometry)系統,並搭配光纖、光纖雷射、光學濾鏡(Dichroic mirror)、反射光學鏡面及光電倍增管(Photomultiplier tube)整合成光訊號傳遞模組。

    微流道晶片採用微量吸管(Tip)熱壓製成,以達到成本低、體積小、方便更換之特性,研究中使用螢光粒子(F8843、UMDG003)與染色細胞(染劑:SYTO16、SYTO62、CFSE)當作樣本並以波長為488 nm與635 nm之光纖雷射作為激發光源。

    根據實驗結果可得知,使用雷射檢測螢光粒子及染色細胞時,能透過反射鏡面產生反射訊號,從樣本激發出的螢光訊號也能與反射訊號同步被檢測出,這些數據可以幫助我們進行樣本的計數、分析及分選,以達到本研究開發微流式細胞儀之目的。

    In this research develop a microflow cytometry system consisting of a hand-held pipette and a micro-channel chip. It is integrated into optical signal transmission module with optical fiber, fiber laser, optical filter, reflective optical mirror and photomultiplier tube.

    The micro-channel chip is made by hot pressing with a micro-tips to achieve low cost, small size and easy replacement. In this research develop, fluorescent particles(F8843、UMDG003)and stained cells(SYTO16、SYTO62、CFSE)were used as samples and fiber laser with wavelengths of 488 nm and 635 nm were used as excitation sources.

    According to the experimental results, when using laser to detect the fluorescent particles and the stained cells, the sample can generate a reflection signal by the reflective optical mirror surface, and the fluorescent signal excited from the sample can also be detected with the reflection signal at the same time. These data can help us to count, analyze and sort the samples to achieve the purpose of develop microflow cytometry.

    摘要................................................II
    Abstract............................................IV
    謝誌................................................VI
    目錄................................................VII
    表目錄...............................................X
    圖目錄...............................................XI
    簡寫表..............................................XV
    第一章 緒論..........................................1
    1.1 前言.............................................1
    1.2 文獻回顧.........................................2
    第二章 微流道晶片設計及製作...........................19
    2.1 晶片製作之夾具設計...............................20
    2.2 晶片製作流程.....................................22
    2.2.1 管道及微流道成形...............................23
    第三章 檢測系統與配置................................26
    3.1 研究樣本配置與光譜圖.............................26
    3.1.1 細胞染色......................................26
    3.1.2 研究樣本.......................................28
    3.2 檢測系統夾具設計..................................28
    3.2.1 三明治夾具模型建構..............................29
    3.2.2 晶片定位板.....................................29
    3.2.3 反光鏡面座.....................................30
    3.2.4 微流道晶片與三明治檢測模組.......................31
    3.3 光訊號傳遞模組....................................32
    3.4 檢測系統裝置與訊號擷取.............................34
    第四章 結果與討論.....................................37
    4.1 綠色螢光粒子檢測結果...............................37
    4.2 腥紅色螢光粒子檢測結果.............................38
    4.3 使用雙雷射激發綠色螢光粒子檢測結果..................39
    4.4 使用雙雷射激發腥紅色螢光粒子檢測結果................40
    4.5 使用雙雷射激發雙螢光粒子檢測結果....................41
    4.6 使用雙雷射激發染色細胞(SYTO 16, 488 nm)檢測結果.....42
    4.7 使用雙雷射激發染色細胞(SYTO 62, 635 nm)檢測結果.....43
    4.8 使用雙雷射激發雙染色細胞檢測結果....................44
    4.9 使用雙雷射激發雙染色細胞(SYTO 62與CFSE)檢測結果.....45
    第五章 結論與未來展望..................................47
    5.1 結論..............................................47
    5.2 未來展望..........................................48
    第六章 參考文獻.......................................49
    作者簡介.............................................53

    [1]Bayram, A., Serhatlioglu, M., Ortac, B., Demic, S., Elbuken, C., Sen, M., & Solmaz, M. E. (2018). Integration of glass micropipettes with a 3D printed aligner for microfluidic flow cytometer. Sensors and Actuators A: Physical, 269, 382-387.

    [2]Testa, G., Persichetti, G., & Bernini, R. (2015). Micro flow cytometer with self-aligned 3D hydrodynamic focusing. Biomedical optics express, 6(1), 54-62.

    [3]Bernat, I., Gonzalez-Murillo, J. J., Fonseca, L., Moreno, M., & Romano-Rodriguez, A. (2016). Optical particle detection in liquid suspensions with a hybrid integrated microsystem. Sensors and Actuators A: Physical, 247, 629-640.

    [4]Liu, J., Qiang, Y., Alvarez, O., & Du, E. (2018). Electrical impedance microflow cytometry with oxygen control for detection of sickle cells. Sensors and Actuators B: Chemical, 255, 2392-2398.

    [5]Hampson, S. M., Rowe, W., Christie, S. D., & Platt, M. (2018). 3D printed microfluidic device with integrated optical sensing for particle analysis. Sensors and Actuators B: Chemical, 256, 1030-1037.

    [6] Pedrol, E., Martínez, J., Aguiló, M., Garcia-Algar, M., Nazarenus, M., Guerrini, L., ... & Massons, J. (2017). Microfluidic device with dual-channel fluorescence acquisition for quantification/identification of cancer cells. Microfluidics and Nanofluidics, 21(12), 181.

    [7]Hashemi, N., Erickson, J. S., Golden, J. P., Jackson, K. M., & Ligler, F. S. (2011). Microflow Cytometer for optical analysis of phytoplankton. Biosensors and Bioelectronics, 26(11), 4263-4269.

    [8]Mao, X., Lin, S. C. S., Dong, C., & Huang, T. J. (2009). Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing. Lab on a Chip, 9(11), 1583-1589.

    [9]Hwang, Y., Paydar, O. H., & Candler, R. N. (2015). 3D printed molds for non-planar PDMS microfluidic channels. Sensors and Actuators A: Physical, 226, 137-142.

    [10]Mei, Z., Liu, Z., & Zhou, Z. (2016). A compact and low cost microfluidic cell impedance detection system. AIMS BIOPHYSICS, 3(4), 596-608.

    [11]Villegas, M., Cetinic, Z., Shakeri, A., & Didar, T. F. (2018). Fabricating smooth PDMS microfluidic channels from low-resolution 3D printed molds using an omniphobic lubricant-infused coating. Analytica chimica acta, 1000, 248-255.

    [12]Mike Kissner, "What Is Flow Cytometry Light Scatter And How Cell Size And Particle Size Affects It." Cell Sorting, Instrumentation, March 23, 2016

    [13]Etcheverry, S., Faridi, A., Ramachandraiah, H., Kumar, T., Margulis, W., Laurell, F., & Russom, A. (2017). High performance micro-flow cytometer based on optical fibres. Scientific Reports, 7(1), 5628.

    [14]Daniele, M. A., Boyd, D. A., Mott, D. R., & Ligler, F. S. (2015). 3D hydrodynamic focusing microfluidics for emerging sensing technologies. Biosensors and Bioelectronics, 67, 25-34.

    [15]Shivhare, P. K., Bhadra, A., Sajeesh, P., Prabhakar, A., & Sen, A. K. (2016). Hydrodynamic focusing and interdistance control of particle-laden flow for microflow cytometry. Microfluidics and Nanofluidics, 20(6), 86.

    [16]Butement, J. T., Hunt, H. C., Rowe, D. J., Sessions, N. P., Clark, O., Hua, P., ... & Wilkinson, J. S. (2016). Integrated optical waveguides and inertial focussing microfluidics in silica for microflow cytometry applications. Journal of Micromechanics and Microengineering, 26(10), 105004.

    [17]Simon, P., Frankowski, M., Bock, N., & Neukammer, J. (2016). Label-free whole blood cell differentiation based on multiple frequency AC impedance and light scattering analysis in a micro flow cytometer. Lab on a Chip, 16(12), 2326-2338.

    [18]Tang, W., Tang, D., Ni, Z., Xiang, N., & Yi, H. (2017). Microfluidic impedance cytometer with inertial focusing and liquid electrodes for high-throughput cell counting and discrimination. Analytical chemistry, 89(5), 3154-3161.

    [19]Center for Biomolecular Science and Engineering, Sensors, "Microflow Cytometry", Available at: https://www.nrl.navy.mil, Accessed at 10 January 2019.

    [20]Asghari, M., Serhatlioglu, M., Ortaç, B., Solmaz, M. E., & Elbuken, C. (2017). Sheathless microflow cytometry using viscoelastic fluids. Scientific reports, 7(1), 12342.

    [21]Xun, W., Yang, D., Huang, Z., Sha, H., & Chang, H. (2018). Cellular immunity monitoring in long-duration spaceflights based on an automatic miniature flow cytometer. Sensors and Actuators B: Chemical, 267, 419-429.

    [22]Li, X., Fan, B., Liu, L., Chen, D., Cao, S., Men, D., ... & Chen, J. (2018). A Microfluidic Fluorescent Flow Cytometry Capable of Quantifying Cell Sizes and Numbers of Specific Cytosolic Proteins. Scientific Reports, 8(1), 14229.

    [23]Guo, T., Wei, Y., Xu, C., Watts, B. R., Zhang, Z., Fang, Q., ... & Deen, M. J. (2015). Counting of Escherichia coli by a microflow cytometer based on a photonic–microfluidic integrated device. Electrophoresis, 36(2), 298-304.

    下載圖示
    QR CODE