簡易檢索 / 詳目顯示

研究生: 蕭弘岳
Siao, Hong-Yue
論文名稱: 軌道車實作與轉向架銲接殘留應力分析
Fabrication of a Railway Vehicle and Welding Residual Stress Analysis of a Bogie Frame
指導教授: 陳勇全
Chen, Yung-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 車輛工程系所
Department of Vehicle Engineering
畢業學年度: 106
語文別: 中文
論文頁數: 127
中文關鍵詞: 轉向架雙橢球熱源模型殘留應力田口法銲接參數
外文關鍵詞: Bogie, Welding residual Stress, Double ellipsoid heat source model, Taguchi method, Welding Parameter
DOI URL: http://doi.org/10.6346/THE.NPUST.VE.019.2018.E07
相關次數: 點閱:21下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 本文主要是軌道車之實作與轉向架銲接殘留應力分析。首先,利用三維熱彈塑性有限元素模型來模擬銲接試片之溫升及變形,並以雙橢球熱源模型來模擬銲接熱源。本文也進行三種試片之銲接實驗,量測銲接試片之溫度變化及變形情況,並作為本文所提有限元素模型準確性之驗證。另外,本研究也利用田口法來進行銲接參數最佳化之分析,目標是使銲接殘留應力達到最小。探討的銲接參數包括電壓、電流及速度。分析結果顯示,本文所提出之三維熱彈塑性有限元素模型所得溫升及變形結果,與實驗結果之趨勢相同,誤差小於10%。此外,結果顯示,利用田口法進行銲接參數殘留應力分析,最佳化銲接參數所得結果比原始銲接參數所得結果減少約10%。
    軌道車實作部分,完成側框架及軸承箱之銲接,以及輪對、煞車系統、懸吊系統、動力系統及控制系統等之組裝。最後,並進行轉向架軌道動態測試,依據測試結果,提出設計修改。

    In this thesis, a railway vehicle is fabricated and the welding residual stress analysis of a bogie frame is proposed. Firstly, a three-dimensional thermo-elastic-plastic finite element model is proposed to simulate the temperature rise and deformation of the welding test pieces. The double ellipsoid heat source model is used to simulate the welding heat source. The experiment of three welding test pieces is also carried out to measure the temperature rise and deformation. The results are used as the verification of the accuracy of the proposed finite element model in this paper.
    In addition, the Taguchi method is used for the optimization of welding parameters with the goal of minimizing welding residual stress. The welding parameters discussed include voltage, current and speed. The results show that the temperature rise and deformation obtained from the proposed three-dimensional thermo-elastic-plastic finite element model have the same trend as the experimental results. The difference is less than 10%. In addition, the results indicate that the residual stress obtained from the optimized welding parameters can be reduced by about 10% compared with the results obtained from the original welding parameters.
    About the fabrication of the railway vehicle, this study has completed the welding of the side frame and axle box, the assembly of wheelset, braking system, suspension system, power system and control system. Finally, the dynamic test of the bogie is performed on test track. Based on the test results, design modifications are also proposed.

    摘 要 I
    ABSTRACT II
    謝 誌 IV
    目錄 V
    表目錄 VIII
    圖目錄 IX
    符 號 索 引 XVI
    第一章 緒論 1
    1.1 前言 1
    1.2 文獻回顧 2
    1.2.1 銲接殘留應力之探討 2
    1.2.2 轉向架銲接之探討 2
    1.2.3 銲接參數之探討 3
    1.3 研究目的 3
    1.4 組織與章節 4
    第二章 理論介紹 5
    2.1 熔極式氣體保護電弧焊接原理 5
    2.2 雙橢球熱源模型 7
    2.3 熱傳導理論 14
    2.4熱對流理論 17
    2.5 熱彈塑性理論 19
    第三章 銲接試片實驗量測及有限元素模型分析 21
    3.1 實驗設備 21
    3.2 實驗步驟 29
    3.2.1 銲接溫升實驗量測 29
    3.2.2 銲接變形實驗量測步驟 37
    3.2.3 銲接試片蝕刻實驗步驟 40
    3.3 實驗結果 43
    3.3.1 銲接試片溫度量測結果 43
    3.3.2 銲接試片變形量測結果 51
    3.3.3 銲接試片蝕刻實驗結果 53
    3.4 銲接試片有限元素分析 55
    3.4.1 幾何尺寸與有限元素模型 55
    3.4.2 材料性質與邊界條件 61
    3.4.3有限元素模型驗證 64
    3.4.4 銲接試片溫度場及應力場隨時間之變化 72
    3.5利用田口法求最佳化銲接參數 78
    3.5.1 直接耦合與間接耦合法之差異 78
    3.5.2銲接參數直交表 78
    3.5.3銲接參數之銲道尺寸 78
    3.5.4 銲接殘留應力量測截面位置及拘束位置 82
    3.5.5 銲接參數最佳化結果 82
    第四章 轉向架實作 90
    4.1 結構介紹 90
    4.2 工程圖 90
    4.3轉向架製作及組裝 102
    4.3.1 設備介紹 102
    4.3.2側框架定位及銲接 102
    4.3.3 輪對對位 102
    4.3.4 轉向架與輪對之組合及懸吊與煞車系統組裝 109
    4.4 控制系統組裝 109
    4.5動力系統 109
    4.6 轉向架實車測試 117
    第五章 結論 123
    參考文獻 124
    作者 127

    1. Vladislav, B., Mária, B., Michal, Š., Milan, V., and Milan, S., 2017,“Measurement and numerical analyses of residual stress distribution near weld joint” Procedia Engineering, Vol.192 , pp. 22 – 27.
    2. Chen, B. Q., 2016, “Effects of plate configurations on the weld induced deformations and strength of fillet-welded plates” Marine Structures, Vol. 50, pp. 243-259.
    3. Chen,Z., Chen, Z. C., and Shenoi, R, 2015, “Influence of welding sequence on welding deformation and residual stress of a stiffened plate structure” Ocean Engineering, Vol. 106, pp. 271-280.
    4. Dean, D., and Hidekazu, M., 2006, “Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements” Computational Materials, Vol. 37, pp. 269–277.
    5. Eisazadeh, H., Achuthan, A., Goldak, J. A., and Aidun, D. K., “Effect of material properties and mechanical tensioning load on residual stress formation in GTA 304-A36 dissimilar weld” Journal of Materials Processing Technology, Vol. 222, pp. 344–355.
    6. Venkata, A. K.,Trunam, C. E.,Wimpory, R. C., and Pirling, T., 2017, “Numerical simulation of a three-pass TIG welding using finite element method with validation from measurements” International Journal of Pressure Vessels and Piping, pp. 1-120
    7. Dean, D., and Hidekazu, .M., 2008 “Prediction of welding distortion and residual stress in athin plate butt-welded joint” Computational Materials Science, Vol. 43, pp. 353–3650
    8. Sharatkumar, M. V., and Prasad, N. S., 1999, “Estimation of residual stresses in weldments using a nine-noded degenerated shell element” Journal of Materials Processing Technology, Vol. 91, pp. 150–160.
    9. Bhatti, A. A., Barsoum, Z., and Khurshid, M, “Development of a finite element simulation framework for the prediction of residual stresses in large welded structures” Computers and Structures, Vol. 133, pp. 1–11.
    10. 黃小葉,2008,焊接構架側梁殘餘應力數值模擬分析,碩士論文,西南交通大學,交通運輸工程研究所,四川
    11. Weilin, Z., Gunnars, J.,Dong, P., and Hong, J,“Improvement and Validation of Weld Residual Stress Modelling Procedure” .
    12. Heinze, C., Schwenk, C., and Rethmeier, M., 2012, “Effect of heat source configuration on the result quality of numerical calculation of welding-induced distortion” Simulation Modelling Practice and Theory, Vol. 20, pp. 112–123.
    13. Sabapathy, P. N., Wahab, M. A., and Painter, M. J., 2000, “The prediction of burn-through during in-service welding of gas pipelines” International Journal of Pressure Vessels and Piping, Vol. 77, pp. 669–6770.
    14. Jerzy Winczek, 2010, “Analytical solution to transient temperature field in a half-infinite body caused by moving volumetric heat source” International Journal of Heat and Mass Transfer, Vol. 53, pp. 5774–5781.
    15. Gery, D., Long, H., and Maropoulos, P., 2005, “Effects of welding speed, energy input and heat source distributionon temperature variations in butt joint welding” Journal of Materials Processing Technology, Vol. 167, pp. 93–401.
    16. Joshi, S., Hilderbrand, J., Aloraier, A. S., and Rabczulk, T, 2013, “Characterization of material properties and heat source parameters inwelding simulation of two overlapping beads on a substrate plate” Computational Materials Science, Vol. 69. pp. 559–565.
    17. Goldak, J.,Chakravatri, A., and Bibby, M., 1984, “A New Finite Element Model for Welding Heat Sources,”Metallurgical Transactions B, Volt. 15, pp. 299-305.
    18. Yunus, A.C., 2006,“Heat and Mass Transfer.” McGraw-Hill, pp.224-248.
    19. 鄔德傳、張瑞宏,「緩衝材料熱傳導與放射性廢料處置場溫度效應」,國立中央大學土木工程系,90學年碩士論文。
    20. 周杰,2010,銲接殘餘應力對構架疲勞強度的影響,碩士論文,西南交通大學,交通運輸工程研究所,四川。
    21. 王聰,2012,鋼結構大型銲接構件的銲接變形預測與控制,碩士論文,青島理工大學,土木工程研究所,青島市。
    22. 陳躍,2014,地鐵構架多道銲應力調控與銲接順序優化方法研究,博士論文,北京交通大學,載運工具應用工程研究所,北京市。
    23. 莫春立,錢百年,國旭明,于少飛,2001,「銲接熱源計算模式的研究進展」,銲接學報,第22卷,第3期,第93-96頁。
    24. 王興建,2013,超厚東箱體結構銲接溫度場及應力場的三維數值模擬,碩士論文,武漢理工大學,結構工程研究所,武漢市。
    25. 王勇,2009,熔化銲銲接接頭的溫度場和應力數值模擬,碩士論文,北京交通大學,材料加工工程研究所,北京市。
    26. Nest, J. D., 2015, “ALSTOM Bogie Catalogue,” Railway vehicles and signalling, France.

    下載圖示
    QR CODE