簡易檢索 / 詳目顯示

研究生: 張家昌
Chia-Chang Chang
論文名稱: 具導向性自組裝能力的掌性氧釩錯合物應用在主族金屬 (I) 和 (II) 離子篩選及其衍生之不對稱氧化反應的研究
The Applications of Directed Self-Assembly of Chiral Oxidovanadium(V) Methoxides for Metal (I) and (II) Ion Specific Recognition and Enantioselective Aerobic Oxidation
指導教授: 陳建添
Chen, Chien-Tien
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 203
中文關鍵詞: 四聚簇狀體離子篩選不對稱氧化反應四股螺旋體
英文關鍵詞: tetrameric cluster, specific recognition, asymmetric catalytic aerobic oxidation, quadruple helix
論文種類: 學術論文
相關次數: 點閱:118下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,我們實驗室已成功發展單向四聚簇狀體之研究,可將此四聚簇狀體應用在鹼金屬族及銀離子等重金屬的離子篩選上,歸納出單向四聚簇狀體對鹼金屬族離子的增效式篩選強度為K+ > Cs+ >> Na+ > Li+,藉此性質模擬鉀離子通道的KcsA膜蛋白,其最外層開口處四個等手性胺基甲醯胺基的鉗合環境相同。
    本論文藉此修飾氧釩錯合物的結構,將偏釩酸鹽及具自組裝性質的N-亞柳胺基酸衍生之掌性氧釩錯合物形成雙向四聚簇狀體,並應用於增效式篩選主族金屬離子及不對稱氧化反應。在鹼金屬族離子的增效式篩選強度為 K+ >> Na+ > Cs+ > Li+ ,藉此性質模擬自然界中的端粒,由於雙向四聚簇狀體的空間效應導致與單相四聚簇狀體結果不同。另外,在不對稱氧化α-羥基芐基扁桃酸硫酯及安息香反應中,利用雙溶劑系統時選擇因子效果分別為 9及6.9為最佳。由本實驗室發展之鹼土金屬離子在單向四聚簇狀體的特性,此氧釩錯合物在與鹼土金屬鉗合時會以四股螺旋體形成。

    In the past five years, a series of C4-symmetric tetrameric cluster have developed by our lab. The application of directed self-assembly of chiral oxidovanadium methoxides for metal (I) and silver ion specific recognition. The synergistic recognition of Metal (I) ion were K+ > Cs+ >> Na+ > Li+ by C4-symmetric tetrameric cluster. The tetrameric cluster imitate KcsA membrane protein with a synergistic binding of K+ by four homochiral glycine residues near the opening site in KcsA.
    In this way, we developed synergistic alkali metal ion recognition and asymmetric catalytic aerobic oxidation by alkali metal metavanadate and chiral dimer oxidovanadium(V) N-salicylidene complex bearing a bridge between C(5) positions that can self-assemble into an C4-symmetric quadruple helix. The synergistic recognition of metal (I) ion were K+ >> Na+ > Cs+ > Li+ by directed self-assembly quadruple helix, its result was different from C4-symmetric tetrameric cluster for spacer effect. Application of quadruple helix imitate telomere. It used two solvents system to react on enantioselective aerobic oxidation of α-hydroxyl-S-benzyl-mandelate, the best krel is 9 and benzoin is 6.9. Induced by the alkaline-earth metal ion, the dimeric complex can self-assemble into a C4-symmetric quadruple helix.

    中文摘要 Abstract 第一章 緒論 第一節 前言........................ 1 第二節 自然界金屬離子在離子通道上之研究.......... 6 壹、自然界中KcsA-K+離子通道............ 6 貳、自然界中鈣離子與蛋白質生成具有C4-對稱的四聚簇狀 體....................... 9 第三節 金屬離子在離子載體上之研究............. 10 壹、冠狀醚類衍生物應用在離子載體系統........ 10 貳、具自組裝能力的鳥嘌呤分子應用在離子載體系統.. 12 参、具對稱性分子應用在離子載體系統........ 15 肆、具自組裝性質的釩金屬錯合物應用在離子載體系統. 16 第四節 離子載體在螢光偵測器上研究............ 17 壹、鋅離子載體應用在螢光偵測器.......... 17 貳、鉛離子載體應用在螢光偵測器.......... 18 第五節 金屬錯合物在醇類氧化反應之研究.......... 20 第六節 金屬錯合物在不對稱氧化反應之研究......... 34 壹、釕金屬催化系統................ 34 貳、鈀金屬催化系統................ 35 参、釩金屬催化系統................ 40 第七節 有機催化劑在不對稱氧化反應之研究.........41 第八節 合成不對稱α-羥基硫酯類及α-羥基酮類之研究..... 41 壹、不對稱α-羥基硫酯類.............. 41 貳、不對稱α-羥基酮類之研究............ 43 第二章 結果與討論 第一節 單向C4-對稱鉀離子四聚簇狀體結構.......... 46 第二節 雙向C4-對稱四聚簇狀體結構之探討.......... 49 壹、研究動機................... 49 貳、結果與討論.................. 50 参、分子結構調整................. 53 肆、雙向四聚簇狀體X-ray單晶繞射結構....... 57 第三節 鹼金屬正一價陽離子的特定增效式篩選傳送...... 62 第四節 具自組裝性質的Ba2+ 四聚螺旋體之探討........ 66 第五節 雙向四聚簇狀體在α-羥基縮酸衍生物及α-羥基酮類不對稱氧化之應用及其反應機構之探討................ 67 第六節 結論....................... 75 第七節 未來與展望.................... 76 第三章 實驗步驟與光譜數據 第一節 分析儀器..................... 77 第二節 實驗步驟及光譜數據................ 79 壹、化劑前趨物製備的一般步驟............ 75 貳、催化劑合成步驟................. 95 参、四聚簇狀體製備的一般步驟............ 99 肆、雙向四聚簇狀體增效式篩選金屬離子步驟...... 100 伍、Ba2+ 四聚螺旋體形成步驟............. 101 陸、催化反應的起始物製備一般步驟.......... 101 柒、不對稱氧化反應的實驗步驟............104 參考文獻......................... 106 附錄 : 1H NMR 光譜圖、13C NMR 光譜圖和 51V NMR 光譜圖..... S1 X-ray單晶繞射結構圖................... S63 高壓液像層析儀圖譜.................... S97

    1. Jiang, M.; Shen, T.; Xu, H.-B.; Liu, C.-L. Progress in Chemistry 2002, 14, 263.
    2. (a) Doyle, D. A.; Cabral, J. M.; Pfuetzner, R. A.; Kuo, A.; Gulbis, J. M.; Cohen, S. L.; Chait, B. T.; MacKinnon R. Science 1998, 280, 69. (b) Gouaux1, E.; MacKinnon R. Science 2005, 310, 1461. (c) Valiyaveetil, F. I.; Leonetti, M.; Muir, T. W.; MacKinnon, R. Science 2006, 314, 1004. (d) 趙文龍; 隋森芳, 科學通報, 2004, 49, 403.
    3. (a) Orlova, E. V.; Rahman, M. A.; Gowen, B.; Volynski, K. E.; Ashton, A. C.; Manser, C.; van Heel, M.; Ushkaryov, Y. A. Nature Struc. Biol. 2000, 7, 48. (b) Saibil, H. R. Nature Struc. Biol. 2000, 7, 3.
    4. (a) Bourgion, M.; Wong, K. H.; Hui, J. Y.; Smid, J. J. Am. Chem. Soc. 1975, 97, 3462. (b) Vetrichelvan, M.; Lai, Y. H.; Mok, K. F. Dalton Trans. 2003, 295.
    5. (a) Shi, X.; Fettinger, J. C.; Davis, J. T. J. Am. Chem. Soc. 2001, 123, 6738. (b) Wu, G.; Wong, A.; Gan, Z.; Davis, J. T. J. Am. Chem. Soc. 2003, 125, 7182. (c) Gill, M. L.; Strobel, S. A.; Loria, J. P. J. Am. Chem. Soc. 2005, 127, 16723. (d) Kotch, F. W.; Sidorov, V.; Lam, Y. F.; Kayser, K. J.; Li, H.; Kaucher, M. S.; Davis, J. T. J. Am. Chem. Soc. 2003, 125, 15140.
    6. Kim, J.; Kim, S.-G.; Seong, H. R.; Ahn, K. H. J. Org. Chem. 2005, 70, 7227.
    7. Lin, Y.-H.; Kuo, T.-S.; Chen, C.-T. J. Am. Chem. Soc. 2008, 130, 12842.
    8. (a) Hirano, T.; Kikuchi, K.; Urano, Y.; Higuchi, T.; Nagano, T. Angew. Chem., Int. Ed. 2000, 39, 1052. (b) Chen, C.-T.; Hua, W.-P. J. Am. Chem. Soc. 2002, 124, 6246.
    9. (a) Matsumoto, M.; Watanabe, N. J. Org. Chem. 1984, 49, 3435. (b) Miyata, A.; Murakami, M.; Irie, R.; Katsuki, T. Tetrahedron Lett. 2001, 42, 7067. (c) Dijksman, A.; Arends, I. W. C. E.;Sheldon, R. A. Chem. Commun. 1999, 1591. (d) Marko, I.E.; Giles, P. R.; Tsukazaki, M.; Chelle-Regnaut, I.; Urch, C.J.; Brown, S. M. J. Am. Chem. Soc. 1997, 119, 12661. (e) Yamaguchi, K.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Am. Chem. Soc. 2000, 122, 7144. (f) Hanyu, A.; Takezawa, E.; Sakaguchi, S.; Ishii, Y. Tetrahedron Lett. 1998, 39, 5557.
    10. (a) Nishimura, T.; Kakiuchi, N.; Inoue, M.; Uemura, S. Chem. Commun. 2000, 1245. (b) Kaneda, K.; Fujii, M.; Morioka, K. J. Org. Chem. 1996, 61, 4502. (c) Peterson, K. P.; Larock, R. C. J. Org. Chem. 1998, 63, 1245. (d) Nishimura, T.; Onoue, T.; Ohe, K.; Uemura, S. J. Org. Chem. 1999, 64, 6750. (e) Schultz, M. J.; Park, C. C.; Sigman, M. S. Chem. Commun. 2002, 3034.
    11. (a) Vilas Boas, L.; Costa Pessoa, J.; “In Comprehensive Coordination Chemistry”; (b) Dichmann, K.; Hamer, G.; Nyburg, D. C.; Reynolds, W. F. J. Chem. Soc. D 1970, 1295.
    12. (a) Dodge, R. P.; Templeton, D. H.; Zalkin, A. J. Chem. Phys. 1961, 35, 55. (b) Hon, P. K.; Belford, R. L.; Pfluger, C. E. J. Chem. Phys. 1965, 43, 3111.
    13. Nakagima, K.; Kojima, M.; Fujita, J. Chem. Let. 1986, 1483.
    14. Kaneda, K.; Kawanishi, Y.; Jitsukawa, K.; Teranishi, S. Tetrahedron Lett. 1983, 24, 5009.
    15. (a) Katsuki, T.; Shapless, K. B. J. Am. Chem. Soc.1980, 102, 5974. (b) Allision, K.; Johnson, P.; Foster, G.; Sparke, M. B. Ind. Eng. Chem. Prod. Res. Dev. 1966, 5, 116. (c) Arzoumanian, H.; Hartig, U.; Metzger, J. Tetrahedron Lett. 1974, 101.
    16. (a) Hata, E.; Takai, T.; Yamada, T.; Mukaiyama, T. Chem. Let. 1994, 1849. (b) Takai, T.; Hata, E.; Mukaiyama, T. Chem. Let. 1994, 885.
    17. (a) Sheng, M. N.; Zajacek, J. G. J. Org. Chem. 1968, 33, 588. (b) Nakagima, K.; Kojima, M.; Fujita, J. Bull. Chem. Soc. Jpn. 1990, 63, 2620. (c) Nakagima, K.; Kojima, M.; Fujita, J. Bull. Chem. Soc. Jpn. 1990, 62, 760. (d) Yamamoto, K.; Oyaizu, K.; Iwasaki, N.; Tsuchida, E. Chem. Let. 1993, 1223. (e) Maeda, Y.; Kakiuchim, N.; Matsumura, S.; Nishimura, T.; Kawamura, T.; Uemura, S. J. Org. Chem. 2002, 67, 6718.
    18. (a) Kirihara, M.; Ochiai, Y.; Takizawa, S.; Talahata, H.; Nemoto, H. Chem. Commun. 1999, 1387. (b) Velusamy, S.; Punniyamurthy, T. Org. Lett. 2004, 6, 217.
    19. (a) Semmelhack, M. F.; Schmid, C. R.; Cortes, D. A.; Chou, C. S. J. Am. Chem. Soc. 1984, 106, 3374. (b) Marko, I. E.; Giles, P. R.; Tsukazaki, M.; Brown, S. M.; Urch, C. J. Science 1996, 274, 2044. (c) Marko, I. E.; Gautier, A.; Chelle-Regnaut, I.; Giles, P. R.; Tsukazaki, M.; Urch, C. J.; Brown, S. M. J. Org. Chem. 1998, 63, 7576. (d) Marko, I. E.; Giles, P. R.; Tsukazaki, M.; Chelle-Regnaut, I.; Gautier, A.; Brown, S. M.; Urch, C. J. J. Org. Chem. 1999, 64, 2433.
    20. Iwahama, T.; Yoshino, Y.; Keitoku, T.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 2000, 65, 6502.
    21. Velusamy, S.; Ahamed, M.; Punniyamurthy, T. Org. Lett. 2004, 6, 4821.
    22. Murahashi, S.-I.; Naota, T. Hirau, N. J. Org. Chem. 1993, 58, 7318.
    23. Lorber, C. Y.; Smidt, S. P. Osborn, J. A. Eur. J. Inorg. Chem. 2000, 655.
    24. Muldoon, J.; Brown, S. N. Org. Lett. 2002, 4, 1043.
    25. Vedejs, E.; MacKay, J. A. Org. Lett. 2001, 3, 535.
    26. Choi, J. H.; Choi, Y. K.; Kim, Y. H.; Park, E. S.; Kim, E. J.; Kim, M.-J.; Park, J. J. Org. Chem. 2004, 69, 1972.
    27. (a) Masutani, K.; Uchida, T.; Irie, R.; Katsuki, T. Tetrahedron Lett. 2000, 41, 5119. (b) Jensen, D. R.; Puglsey, J. S.; Sigman, M. S. J. Am. Chem. Soc. 2001, 123, 7475. (c) Ferreira, E. M.; Stoltz, B. M. J. Am. Chem. Soc. 2001, 123, 7725. (d) Bagdanoff, J. T.; Ferreira, E. M.; Stoltz, B. M. Org. Lett. 2003, 5, 835. (e) Mandel, S. K.; Jensen, D. R.; Puglsey, J. S.; Sigman,M. S. J. Org. Chem. 2003, 68, 4600. (f) Mueller, J. A.; Jensen, D. R.; Sigman, M. S. J. Am. Chem. Soc. 2002, 124, 8202. (g) Trend, R. M.; Stoltz, B. M. J. Am. Chem. Soc. 2008, 130, 15957.
    28. Miersch, O.; Kramell, R.; Parthier, B.; Wastemack, C. Phytochemistry 1999, 50, 353.
    29. Queiroz, N.; do Nascimento, G. M. Tetrahedron Lett. 2002, 13, 1461.
    30. Radosevich, A. T.; Musich, C.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 1090.
    31. (a) Weng, S.-S.; Shen, M.-W.; Kao, J.-Q.; Munot, Y. S.; Chen, C.-T. Proc. Natl. Acad. Sci. USA 2006, 103, 3522. (b) Chen, C.-T.; Bettigeri, S.; Weng, S.-S.; Pawar, V. D.; Lin, Y.-H.; Liu, C.-Y.; Lee, W.-Z. J. Org. Chem. 2007, 72, 8175.
    32. Marigo, M.; Franzen, J.; Poulsen, T. B.; Zhuang, W.; Jorgensen, K. A. J. Am. Chem. Soc. 2005, 127, 6964.
    33. (a) D'Accolti, L.; Detomaso, A.; Fusco, C.; Rosa, A.; Curci, R. J. Org. Chem. 1993, 58, 3600. (b) Ooi, T.; Saito, A.; Maruoka, K. J. Am. Chem. Soc. 2003, 125, 3220. (c) Kallfass, U.; Enders, D. Angew. Chem., Int. Ed. 2002, 41, 1743.
    34. Pinnavaia, T. J.; Marshall, C. L.; Mettler, C. M.; Fisk, C. L.; Miles,
    H. T.; Becker, E. D. J. Am. Chem. Soc. 1978, 97, 3625.
    35. Daniel, P.; Sivasubramanian, A.; Rene, R. Chem. Commun. 1996, 1913 .
    36. Van Staveren, C. J.; van Eerden, J.; van Veggel, F. C. J. M.; Harkema, S.; Reinhoudt, D. N. J. Am. Chem. Soc. 1988, 110, 4994.
    37. Munot Y. S.; Salunke S. B.; Wang Y.-C.; Lin C.-C.; Chen C.-C.; Liu,Y.-H.; Lin R.-K.; Chen, C.-T. Adv. Funct. Mater. 2008, 18, 527.
    38. Hall,S. S.; Doweyko, L. M.; Doweyko,A. M.; Zilenovski, J. S. R. J. Med. Chem. 1977, 20, 1239.
    39. Breslow J. Am. Chem. Soc. 1958, 80, 3719.

    無法下載圖示 本全文未授權公開
    QR CODE