簡易檢索 / 詳目顯示

研究生: 林玠嫺
chieh-hsien lin
論文名稱: 合成鐵鉑-半導體(II-VI)奈米複合材料及利用陽離子交換反應形成Type-II半導體之性質鑑定
Characterization and Synthesis of FePt- semiconductor (II-VI) hybrid nanostructures and Synthesis of Type-II semiconductor by Cation Exchange Reactions
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 85
中文關鍵詞: 複合材料半導體
論文種類: 學術論文
相關次數: 點閱:65下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中我們合成CdS與CdSe奈米棍,且控制 FePt 奈米粒子選擇性的在半導體的末端生長,合成出CdS-FePt 、CdSe-FePt 半導體奈米棒末端接磁性粒子的奈米複合材料,並且具有光學和磁性性質。在光學部分我們利用光激發光螢光光譜儀(PL)可得知當CdS、CdSe接上FePt奈米粒子後,由於Schottky barrier的關係會使電子產生轉移且無法再結合,導致其放光強度降低。而在磁性部分我們利用超導量子干涉儀(SQUID)得知材料為超順磁性且其飽和磁化率有下降的趨勢。之後還可加入Au奈米粒子合成CdS-FePt-Au、CdSe-FePt-Au這種具有多成分的奈米異質結構。利用穿透式電子顯微鏡(TEM)、能量分散光譜儀(EDS)、粉末X-ray繞射儀(XRD)、紫外光可見光光譜儀(UV-Visible)鑑定其尺寸、結構、元素組成。
      此外,我們還利用合成出的CdS-FePt奈米複合材料,在室溫下進行離子交換反應,利用hard-soft acid-base (HSAB) 原理,使其在形狀不變的情況下經由置換反應形成具有不同結構的type-II半導體奈米複合材料,而且藉由控制加入Cu+離子的濃度,使得奈米複合棍狀材料中Cd元素被置換的程度不同,之後我們再利用能量分散光譜儀(EDS)、粉末X-ray繞射儀(XRD)和紫外光可見光光譜儀(UV-Visible)去証實不同Cu/Cd比例的type-II CdS-Cu2S-FePt形成。

    In this study, we successfully synthesized CdS-FePt and CdSe-FePt nanorod by the selective growth of FePt nanoparticles on the tip of semiconductor nanorod. Moreover, these hybrid nanostructures still exhibited the optical and magnetic properties. However, the quenched emission of hybrid nanostructures was observed by photoluminescence spectrometer (PL). The intensity reduction resulted from the formation of a Schottky barrier. The formation of barrier made the electron only transferred from the semiconductor nanorod to FePt particle on the tip of nanorod and then, the electron and hole did not recombination within the semiconductor nanorod. Also, the hysteresis loops showed that CdS-FePt and CdSe-FePt were superparamagnetic. Particularly, the significant drop in saturation magnetization of CdS-FePt and CdSe-FePt were due to the presence of the non-magnetic phase, such as CdS and CdSe in hybrid nanostructures. Further, CdS-FePt-Au and CdSe-FePt-Au nanorod were prepared by the reduction of Au precursor. All hybrid nanostructures were examined by transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and energy dispersive spectroscopy (EDX).
    According to hard-soft acid-base theory (HSAB theory), Cu+ in methanol was used to substitute for the Cd2+ in CdS-FePt nanorod. Through the cation exchange reaction (CER), the heterostructures of CdS-Cu2S-FePt and Cu2S-FePt were synthesized at room temperature. In detail, the extent of conversion during CER depended on the Cu+/Cd2+ ratio. In the other words, low amount of Cu+ produced partial conversion to CdS-Cu2S-FePt and an excess amount of Cu+ leaded to full conversion to Cu2S-FePt. Finally, The results of TEM, XRD, EDS, and Ultra-Violet and Visible Spectroscope (UV-Vis) demonstrated the formation of CdS-Cu2S-FePt and Cu2S–FePt.

    總目錄……………………………………………………………………I 圖目錄…………………………………………………………………IV 表目錄…………………………………………………………………VII 中文摘要 ……………………………………………………………VIII 英文摘要………………………………………………………………IX 第一章:緒論……………………………………………………………1 1-1 奈米材料簡介………………………………… …………………1 1-2 半導體發光材料…………………………………………………3 1-2-1量子限量化效應…………………………………………………9 1-2-2直遷能隙與非直遷能隙…………………………………………12 1-2-3發光原理…………………………………………………………14 1-3 硫化鎘的簡介……………………………………………………17 1-4 奈米複合材料的介紹……………………………………………20 1-4 磁性奈米材料介紹………………………………………………23 第二章:實驗部份……………………………………………………27 2-1 研究動機與目的…………………………………………………27 2-2 實驗設計及流程…………………………………………………29 2-3 實驗裝置…………………………………………………………31 2-4 實驗儀器…………………………………………………………32 2-5 奈米粒子材料之合成……………………………………………34 2-5-1 實驗藥品………………………………………………………34 2-5-2 合成硫化鎘CdS奈米棍實驗步驟……………………………36 2-5-3 合成硒化鎘CdSe奈米棍實驗步驟……………………………37 2-5-4 合成CdS-FePt 和CdSe-FePt奈米複合材料實驗步驟………38 2-5-5 合成CdS-FePtAu和CdSe-FePtAu奈米複合材料實驗步驟…39 2-6 陽離子交換反應…………………………………………………40 2-6-1 實驗藥品………………………………………………………40 2-6-2 實驗裝置………………………………………………………40 2-6-3 陽離子交換反應之實驗步驟 ………………………………41 第三章:結果與討論…………………………………………………42 3-1 CdS 、CdSe奈米複合材料之合成與鑑定………………………42 3-1-1奈米複合材料之形貌…………………………………………44 3-1-2奈米複合材料之結構分析……………………………………51 3-1-3奈米複合材料之元素組成分析………………………………53 3-1-4奈米複合材料之光學分析……………………………………56 3-1-5奈米複合材料的磁性分析……………………………………61 3-2 陽離子置換反應與鑑定…………………………………………64 3-2-1 CdS-FePt置換形成Cu2S-FePt的形貌…………………………67 3-2-2 CdS-FePt置換形成Cu2S-FePt的結構分析……………………71 3-2-3 CdS-FePt置換形成Cu2S-FePt的元素組成分析………………73 3-2-4 CdS-FePt置換形成Cu2S-FePt的光學分析……………………75 第四章:結論……………………………………………………………77 第五章:未來展望………………………………………………………78 參考文獻………………………………………………………………79 圖目錄 圖1-1導體、半導體及絕緣體之能帶圖………………………………4 圖1-2常見半導體能隙和晶格常數關係圖……………………………7 圖1-3量子限量化示意圖………………………………………………9 圖1-4 CdSe奈米晶體之UV吸收光譜圖……………………………10 圖1-5理想系統中塊材至奈米尺寸之量子能量與量子狀態密度之關係………………………………………………………………11 圖1-6 (a) 直遷能隙與(b)非直遷能圖…………………………………12 圖1-7光激發光(Photoluminescence;PL)……………………………16 圖1-8 電激發光(Photoluminescence;PL)……………………………16 圖1-9 磁矩翻轉需克服能量ΔE 示意圖……………………………25 圖1-10 超順磁奈米顆粒的M-H loop…………………………………25 圖2-1 實驗與儀器鑑定流程圖………………………………………30 圖2-2 合成半導體奈米複合材料之實驗裝置圖……………………31 圖2-3 置換示意圖…………………………………………………… 40圖3-1 CdS、CdSe奈米複合棍狀材料合成示意圖…………………… 42圖3-2 CdS之TEM圖……………………………………………………46 圖3-3 CdS之HRTEM圖………………………………………………46 圖3-4 CdSe之TEM圖…………………………………………………47 圖3-5 CdSe之HRTEM圖………………………………………………47 圖3-6 CdS-FePt之TEM圖………………………………………………48 圖3-7 CdSe-FePt之TEM圖……………………………………………48 圖3-8 CdS-FePt之HRTEM圖…………………………………………49 圖3-9 CdSe-FePt之HRTEM圖…………………………………………49 圖3-10 CdS-FePt-Au之TEM圖…………………………………………50 圖3-11 CdSe-FePt-Au之TEM圖………………………………………50 圖3-12 CdS、CdS-FePt、CdS-FePt-Au之XRD繞射圖…………………52 圖3-13 CdSe、CdSe-FePt、CdSe-FePt-Au之XRD繞射圖………………52 圖3-14 CdS和CdS-FePt之UV-VIS吸收光譜…………………………58 圖3-15 CdS和CdS-FePt之PL螢光光譜……………………………… 58 圖3-16 CdSe和 CdSe-FePt之UV-Vis吸收光譜………………………59 圖3-17 CdSe和CdSe-FePt之PL螢光光譜……………………………59 圖3-18 CdS和CdS-FePt之時間解析光激螢光光譜圖………………60 圖3-19 CdSe和CdSe-FePt之時間解析光激螢光光譜圖………………60 圖3-20 FePt奈米粒子和CdS-FePt奈米複合材料室溫(300k)之 磁滯曲線圖……………………………………………………62 圖3-21 FePt奈米粒子和CdSe-FePt奈米複合材料室溫(300k)之磁滯曲線圖………………………………………………… 63 圖3-22置換反應式……………………………………………………65 圖3-23離子置換反應示意圖…………………………………………66 圖3-24 CdS-Cu2S-FePt(Cu+=11mg)之TEM圖……………………68 圖3-25 CdS-Cu2S-FePt(Cu+=11mg)之HRTEM圖……………………69圖3-26 CdS-Cu2S-FePt(Cu+=32mg)之TEM圖………………………69圖3-27 Cu2S-FePt(Cu+=45mg)之TEM圖…………………………70 圖3-28 Cu2S-FePt(Cu+=45mg)之HRTEM圖………………………70 圖3-29 置換反應之XRD繞射圖……………………………………72 圖3-30 置換前CdS-FePt之元素組成分析圖…………………………73 圖3-31 置換後Cu2S-FePt之元素組成分析圖………………………73 圖3-32 置換前後之溶液………………………………………………76 圖3-33 置換前後之UV-Vis吸收光譜………………………………76 表目錄 表1-1 單元素和複合半導體……………………………………………4表1-2 常見半導體參數表………………………………………………8表1-3 磁性物質的分類………………………………………………26 表2-1 實驗藥品的介紹………………………………………………34 表2-2 置換反應之條件………………………………………………41 表3-1 由EDS分析測得之CdS奈米粒子之元素含量比……………53 表3-2 由EDS分析測得之CdS-FePt奈米粒子之元素含量比………53 表3-3 由EDS分析測得之CdS-FePt-Au奈米粒子之元素含量比…54 表3-4 由EDX分析測得之CdSe-FePt奈米粒子之元素含量比……54 表3-5 由EDX分析測得之CdSe-FePt-Au奈米粒子之元素含量比…55 表3-6 置換前後之元素百分比關係圖………………………………74

    1. Li, C. C.; Shuford, K. L.; Chen, M. H.; Lee, E. J.; Cho, S. O. Acs Nano 2008, 2, 1760
    2. Ball,P.Nature,2001,414,142
    3. Narayanan, R ;Mostafa, A; El Sayed . Nano Letters, 2004, 7 ,1343
    4. Wu, H.; Zhang, R.; Liu, X. X.; Lin, D. D.; Pan, W. Chemistry of Materials 2007, 19, 3506
    5. lGoldstein, A. N.; Echer, C. M.; Alivisatos, A. P. Science 1992, 256, 1425
    6. Wei, Q. H.; Bechinger, C.; Leiderer, P. Science 2000, 287, 625
    7. Wong, E. W.; Sheehan, P. E.; Lieber, C. M. Science 1997, 277, 1971
    8. Haase, M. A.; Qiu, J.; Depuydt, J. M.; Cheng, H. Applied Physics Letters 1991, 59, 1272
    9. Lin, S. C.; Lee, Y. L.; Chang, C. H.; Shen, Y. J.; Yang, Y. M. Applied Physics Letters 2007, 90,
    10. Nakamura, S.; Jia, A. W.; Kobayashi, M.; Yoshikawa, A.; Shimotomai, M.; Kato, Y.; Takahashi, K. Electronics Lett 1998, 2435
    11. Guchhait, A.; Rath, A. K.; Pal, A. J. Chemistry of Materials 2009, 21, 5292
    12. Craford, M. G. Ieee Circuits and Devices Magazine 1992, 8, 24
    13. Savage, N. Technology Review 2000, 103, 38
    14. Tang, H.; Haffouz, S.; Powell, A.; Bardwell, J. A.; Webb, J. Applied Physics Letters 2005, 86, -.
    15. S.M. Sze 原著,張俊彥譯,半導體元件物理與製作技術,高立圖書,
    16. Ishibashi, A. Journal of Crystal Growth 1996, 159, 555
    17. Landholt-Boernstein (1982).
    18. A. Ishibashi, J. Crys. grow., 159 (1996) 555
    19. Alivisatos, A. P. Science 1996, 271, 933
    20. Wang, Y.; Herron, N. Journal of Physical Chemistry 1991, 95, 525
    21. 趙之堯,圓柱型硫化鎘奈米晶體的合成,碩士論文1999。
    22. 徐國財;張立德, 奈米複合材料, 五南圖書出版股份有限公司。
    23. Wang,Y.;Herron,N.,J.Phys.chem.1991,95,525
    24. 固態電子學呂助增 著,國立編譯館主編
    25. 25.J. E. Macintyre(executive editor), F. M. Daniel, V. M. Stirling(assistant editors), Dictionary of Inorganic Compounds-Chemical Database ,1st Editions, Published by Charpman and Hall(1992)
    26. Steigerwald, M. L.; Alivisatos, A. P.; Gibson, J. M.; Harris, T. D.; Kortan, R.; Muller, A. J.; Thayer, A. M.; Duncan, T. M.; Douglass, D. C.; Brus, L. E. Journal of the American Chemical Society 1988, 110, 3046
    27. Rossetti, R.; Ellison, J. L.; Gibson, J. M.; Brus, L. E. Journal of Chemical Physics 1984, 80, 4464
    28. Gacoin, T.; Lahlil, K.; Larregaray, P.; Boilot, J. P. Journal of Physical Chemistry B 2001, 105, 10228
    29. Reisfeld, R. Journal of Alloys and Compounds 2002, 341, 56.
    30. Komarneni, S.; Roy, R.;Li, Q ,H, Mater. Res. Bull. 1992, 12, 1393.
    31. Landry, C. C.; Lockwood, J.; Barron, A. R. Chemistry of Materials 1995, 7, 699.
    32. Zhu, J. J.; Palchik, O.; Chen, S. G.; Gedanken, A. Journal of Physical Chemistry B 2000, 104, 7344
    33. Murray, C. B.; Norris, D. J.; Bawendi, M. G. Journal of the American Chemical Society 1993, 115, 8706
    34. Lazell, M.; O'Brien, P. Journal of Materials Chemistry 1999, 9, 1381
    35. Schmid, G.; Lehnert, A.; Malm, J. O.; Bovin, J. O. Angewandte Chemie-International Edition in English 1991, 30, 874
    36. Schmid, G.; West, H.; Malm, J. O.; Bovin, J. O.; Grenthe, C. Chemistry-a European Journal 1996, 2, 1099
    37. Alayoglu, S.; Nilekar, A. U.; Mavrikakis, M.; Eichhorn, B. Nature Materials 2008, 7, 333
    38. Yang, J.; Lee, J. Y.; Too, H. P. Journal of Physical Chemistry B 2005, 109, 19208
    39. Lu, L. H.; Sun, G. Y.; Zhang, H. J.; Wang, H. S.; Xi, S. Q.; Hu, J. Q.; Tian, Z. Q.; Chen, R. Journal of Materials Chemistry 2004, 14, 1005
    40. Henglein, A. Langmuir 2001, 17, 2329
    41. Mallik, K.; Mandal, M.; Pradhan, N.; Pal, T. Nano Letters 4, 1, 319
    42. Nemchinov, A.; Kirsanova, M.; Hewa-Kasakarage, N. N.; Zamkov, M. Journal of Physical Chemistry C 2008, 112, 9301
    43. Zhu, Y. F.; Fan, A. H.; Shen, W. Z. Journal of Physical Chemistry C 2008, 112, 10402
    44. Lee, H. J.; Habas, S. E.; Somorjai, G. A.; Yang, P. D. Journal of the American Chemical Society 2008, 130, 5406
    45. Habas, S. E.; Yang, P. D.; Mokari, T. Journal of the American Chemical Society 2008, 130, 3294
    46. Ferrando, R.; Jellinek, J.; Johnston, R. L. Chemical Reviews 2008, 108, 845
    47. Mokari, T.; Sztrum, C. G.; Salant, A.; Rabani, E.; Banin, U. Nature Materials 2005, 4, 855
    48. Maynadie, J.; Salant, A.; Falqui, A.; Respaud, M.; Shaviv, E.; Banin, U.; Soulantica, K.; Chaudret, B. Angewandte Chemie-International Edition 2009, 48, 1814
    49. Habas, S. E.; Yang, P. D.; Mokari, T. Journal of the American Chemical Society 2008, 130, 3294
    50. Luther, J. M.; Zheng, H. M.; Sadtler, B.; Alivisatos, A. P. Journal of the American Chemical Society 2009, 131, 16851
    51. Li, X. M.; Shen, H. B.; Li, S.; Niu, J. Z.; Wang, H. Z.; Li, L. S. Journal of Materials Chemistry 2010, 20, 923-936
    52. Shieh, F.; Saunders, A. E.; Korgel, B. A. Journal of Physical Chemistry B 2005, 109, 8538-8542.55.Shieh, F.; Saunders, A. E.; Korgel, B. A. Journal of Physical Chemistry B 2005, 109, 8538
    53. Chen, Y. T.; Ding, J. B.; Guo, Y.; Kong, L. B.; Li, H. L. Materials Chemistry and Physics 2003, 77, 734-737
    54. Peng, Z. A.; Peng, X. G. Journal of the American Chemical Society 2001, 123, 1389-1395.
    55. Lin, H. Y.; Chen, Y. F.; Wu, J. G.; Wang, D. I.; Chen, C. C. Applied Physics Letters 2006, 88,
    56. Menagen, G.; Macdonald, J. E.; Shemesh, Y.; Popov, I.; Banin, U. Journal of the American Chemical Society 2009, 131, 17406
    57. Maynadie, J.; Salant, A.; Falqui, A.; Respaud, M.; Shaviv, E.; Banin, U.; Soulantica, K.; Chaudret, B. Angewandte Chemie-International Edition 2009, 48, 1814
    58. He, S. L.; Zhang, H. W.; Delikanli, S.; Qin, Y. L.; Swihart, M. T.; Zeng, H. Journal of Physical Chemistry C 2009, 113, 87
    59. Kim, H.; Achermann, M.; Balet, L. P.; Hollingsworth, J. A.; Klimov, V. I. Journal of the American Chemical Society 2005, 127, 544
    60. He, S. L.; Zhang, H. W.; Delikanli, S.; Qin, Y. L.; Swihart, M. T.; Zeng, H. Journal of Physical Chemistry C 2009, 113, 87
    61. D=M/V,Vcds=2879.83nm3 ,Dcds=13.88*10-18g,MFePt=0.98*10-18g
    CdS-FePt(one tip) 0.98/(13.88+0.98)=6.6%
    CdS-FePt(two tip) {0.98/(13.88+0.98)}*2=13.2%
    (6.6%+13.2%)/2≒10%
    62. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425
    63. Luther, J. M.; Zheng, H. M.; Sadtler, B.; Alivisatos, A. P. Journal of the American Chemical Society 2009, 131, 16851
    64. Son, D. H.; Hughes, S. M.; Yin, Y. D.; Alivisatos, A. P. Science 2004,306, 1009
    65. Wu, Z. C.; Pan, C.; Yao, Z. Y.; Zhao, Q. R.; Xie, Y. Crystal Growth & Design 2006, 6, 1717
    66. Luther, J. M.; Zheng, H. M.; Sadtler, B.; Alivisatos, A. P. Journal of the American Chemical Society 2009, 131, 16851

    無法下載圖示 本全文未授權公開
    QR CODE