簡易檢索 / 詳目顯示

研究生: 劉子豪
論文名稱: 光學希爾伯特偵測法應用於頻域光學同調斷層攝影術 以消除直流項,鏡像和自相關項
Eliminating DC terms, mirror terms and autocorrelation terms on spectral domain optical coherence tomography by optical Hilbert detection method
指導教授: 郭文娟
Kuo, Wen-Chuan
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 61
中文關鍵詞: 頻域光學同調斷層掃瞄技術
英文關鍵詞: Spectral Domain Optical Coherence Tomography
論文種類: 學術論文
相關次數: 點閱:116下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光學同調斷層掃瞄技術(Optical Coherence Tomography;OCT)是近年來發展相當蓬勃的光學量測技術。它以非接觸、非破壞式的檢測方法,提供了快速且高解析度,物體內部結構的檢測。頻域光學同調斷層掃瞄技術(Spectral Domain Optical Coherence Tomography;SD-OCT)是一種新穎的OCT技術,減少了光學系統偵測端的架設,以及利用干涉光譜的分析,使量測的敏感度以及量測的速度大幅度的提升,可以在生物活體上做即時的影像量測,獲得物體內部結構的資訊。此篇論文中,我們提出一種新的頻域光學同調斷層掃瞄技術建構於單一光譜儀。兩道正交極化光同時垂直入射相機的接收端且兩道不同高度的入射光可以被分開,這樣的系統可以避免並消除直流項、自相關項和鏡像。最後討論因為光譜扭曲需要做額外的後處理,以及蓋玻片樣品和雙折射樣品量測。

    Optical coherent tomography (OCT) is a vigorous development technology in recent
    optical measurement methods. It is a non-contact, non-destructive testing method
    which provides a fast and high-resolution detection of internal structure of objects. Spectral Domain Optical Coherence Tomography (SD-OCT) is a new OCT technology which can reduce the detection side optical system set up. It uses interference spectroscopy analysis to increase the measurement sensitivity and the speed, thus in vivo biological imaging measurements can be done in real time.
    In this thesis, we propose a novel SD-OCT setup based on a single camera spectrometer. Two orthogonally polarized beams could be separately taken by two lines of the camera as a result of vertically different incident height. The system could provide the imaging capabilities of elimination the inherent DC term, autocorrelation noise, and the mirror image in SD-OCT. We discuss the additional post-processing required to accommodate for spectral distortions, show calibration measurements in a test sample, and finally demonstrate the system for measuring birefringence phantom

    目錄 I 摘要 V Abstract VI 第一章 背景介紹 1 1.1動機與目的 1 1.2文獻探討 2 1.2.1相移法 2 1.2.2其他 3 1.3單一光譜儀偵測多通道訊號的方法比較 3 第二章 原理背景 6 2.1頻域光譜(光學)同調斷層掃描術(Spectral domain OCT,SD-OCT) 6 2.1.1干涉儀理論 6 2.2兩步相移法(two frame phase shifting) 7 2.2.1 Cosine的傅立葉轉換推導 8 2.2.2 iSine的傅立葉轉換推導 10 2.3光譜儀波長解析度與SD-OCT探測深度的關係 12 第三章架構與方法 13 3.1系統架構圖 13 3.2光學希爾伯特偵測法(Optical Hilbert) 14 3.2.1系統理論推導 15 3.2.1.1 光源部分 15 3.2.1.2 參考光路徑 15 3.2.1.3 信號光路徑 16 3.2.1.4 干涉訊號路徑 17 3.3單一光譜儀取雙通道干涉光譜的方法 18 3.4光源 20 3.5 Berek 極化補償器 ( Berek Polarization Compensator ,BPC ) 22 第四章結果與討論 23 4.1系統測試 23 4.1.1背景雜訊 23 4.1.2雙通道相位差測試 25 4.2光譜校正 26 4.3樣品測試 29 4.3.1位於不同深度的反射鏡樣品 29 4.3.2蓋玻片(一維) 36 4.3.3蓋玻片(二維) 37 4.4討論 39 4.4.1校正倍數 39 4.4.2扣除非干涉訊號再成校正倍數 41 4.4.3 利用Berek改變系統相位 44 第五章結論 50 Reference 51 圖目錄 Figure 1單一光譜儀偵測多通道訊號的方法比較 5 Figure 2 SD-OCT簡易架構圖 6 Figure 3 Cosine圖形 9 Figure 4 Cosine函數的傅立葉轉換 9 Figure 5 iSine圖形 10 Figure 6 FFT[iSin] 11 Figure 7 系統架構圖 13 Figure 8光譜儀俯視圖 18 Figure 9光纖示意圖 19 Figure 10 光路行進圖 19 Figure 11光譜軟體成像(有透鏡) 20 Figure 12光譜軟體成像(無透鏡) 20 Figure 13 SLD規格 21 Figure 14 Berek極化補償器(New Focus,Model 5540) 22 Figure 15 SLD訊號經過傅立葉轉換 23 Figure 16 鎢絲燈訊號經過傅立葉轉換 24 Figure 17(a)光譜軟體呈現干涉訊號 25 Figure 17(b)原始數據扣除非干涉訊號 25 Figure 17(c)放大圖 25 Figure 18相位差900示意圖 26 Figure 19 非干涉兩通道訊號 27 Figure 20 校正非干涉 27 Figure 21校正非干涉 28 Figure 22經過演算法消除直流項 28 Figure 23 原始光譜(橫軸:波長,縱軸:振幅強度) 29 Figure 24 訊號做反傅立葉轉換(橫軸:距離,縱軸:振幅強度) 30 Figure 25 複數頻譜和共軛複數頻譜(橫軸:距離,縱軸:振幅強度) 30 Figure 26光程差40μm(橫軸:距離,縱軸:振幅強度) 31 Figure 27光程差200μm(橫軸:距離,縱軸:振幅強度) 32 Figure 28光程差500μm(橫軸:距離,縱軸:振幅強度) 32 Figure 29光程差850μm(橫軸:距離,縱軸:振幅強度) 33 Figure 30光程差1350μm(橫軸:距離,縱軸:振幅強度) 33 Figure 31光程差1800μm(橫軸:距離,縱軸:振幅強度) 34 Figure 32 光程差對應訊雜比 34 Figure 33光程差對應訊雜比 35 Figure 34蓋玻片做傅立葉轉換(橫軸:距離,縱軸:振幅強度) 36 Figure 35經過演算法蓋玻片訊號(橫軸:距離,縱軸:振幅強度) 37 Figure 36 樣品端架構圖 37 Figure 37 二維蓋玻片(含鏡項) 38 Figure 38 二維蓋玻片(去鏡項) 38 Figure 39原始光譜 39 Figure 40乘校正倍數 39 Figure 41原始光譜 40 Figure 42乘校正倍數 40 Figure 43未扣除非干涉 42 Figure 44扣除非干涉 42 Figure 45未扣除非干涉 42 Figure 46扣除非干涉 43 Figure 47 複數頻譜和共軛複數頻譜(橫軸:距離,縱軸:振幅強度) 44 Figure 48 真實訊號(橫軸:距離,縱軸:振幅強度) 44 Figure 49複數頻譜和共軛複數頻譜(相位差≅400) 45 Figure 50真實訊號(相位差≅400) 45 Figure 51複數頻譜和共軛複數頻譜(橫軸:距離,縱軸:振幅強度) 46 Figure 52 真實訊號(橫軸:距離,縱軸:振幅強度) 46 Figure 53複數頻譜和共軛複數頻譜(橫軸:距離,縱軸:振幅強度) 47 Figure 54真實訊號(橫軸:距離,縱軸:振幅強度) 47 Figure 55複數頻譜和共軛複數頻譜(橫軸:距離,縱軸:振幅強度) 48 Figure 56真實訊號(橫軸:距離,縱軸:振幅強度) 48 Figure 57 相位延遲角對應訊雜比 49

    [1] M. Wojtkowski and A. Kowalczyk, R. Leitgeb and A. F. Fercher, Full range complex spectral optical coherence tomography technique in eye imaging,August 15, 2002,Vol. 27, No. 16,OPTICS LETTERS
    [2] Erich Götzinger, Michael Pircher, Rainer A. Leitgeb,and Christoph K. Hitzenberger, High speed full range complex spectral domain optical coherence tomography, 24 January 2005,Vol. 13, No. 2, OPTICS EXPRESS
    [3] Kye-Sung Lee, Panomsak Meemon, William Dallas, Kevin Hsu, and Jannick P. Rolland, Dual detection full range frequency domain optical coherence tomography, OPTICS LETTERS,Vol. 35, No. 7,April 1, 2010
    [4] Hsu-Chih Cheng a, Jen-Fa Huang b,c,d, Yi-Hua Hsieh b,c,d, Numerical analysis of one-shot full-range FD-OCT system based on orthogonally polarized light, Optics Communications 282 (2009) 3040–3045
    [5] Bernhard Baumann, Erich Götzinger, Michael Pircher, and Christoph K. Hitzenberger, Single camera based spectral domain polarization sensitive optical coherence tomography, 5 February 2007,Vol. 15, No. 3,OPTICS EXPRESS
    [6] Barry Cense and Mircea Mujat, Teresa C. Chen, B. Hyle Park and Johannes F. de Boer, Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera, 5 March 2007,Vol.15,No. 5 ,OPTICS EXPRESS
    [7] Chuanmao Fan, Yi Wang and Ruikang K. Wang,Spectral domain polarization sensitive optical coherence tomography achieved by single camera detection, 25 June 2007,Vol. 15, No. 13,OPTICS EXPRESS
    [8] Cheol Song, MyoungKi Ahn and DaeGab Gweon, Polarization-sensitive spectral-domain optical coherence tomography using a multi-line single camera spectrometer, 8 November 2010,Vol. 18, No. 23,OPTICS EXPRESS
    [9] 郭文娟,莊瓊瑀,差動式光學希爾伯特偵測法對次波長相位之感測
    [10] A. F. Fercher, R. Leitgeb, C. K. Hitzenberger, H. Sattmann, and M. Wojtkowski, Complex Spectral Interferometry OCT, September 1998, SPIE Vol. 3564
    [11] Piotr Targowski *, Maciej Wojtkowski, Andrzej Kowalczyk, Tomasz Bajraszewski,Maciej Szkulmowski, Iwona Gorczy_nska, Complex spectral OCT in human eye imaging in vivo, Optics Communications 229 (2004) 79–84
    [12] Rainer A. Leitgeb, Christoph K. Hitzenberger, and Adolf F. Fercher, Phase-shifting algorithm to achieve high-speed long-depth-range probing
    by frequency-domain optical coherence tomography, November 15, 2003 ,Vol. 28, No. 22,OPTICS LETTERS
    [13] Ruikang K. Wang, In vivo full range complex Fourier domain optical coherence tomography,APPLIED PHYSICS LETTERS 90,054103 2007

    下載圖示
    QR CODE