簡易檢索 / 詳目顯示

研究生: 蘇隆畯
Long-Jyun Su
論文名稱: 不同氮含量螢光奈米鑽石製備及光譜特性研究與生物應用
Fabrication and Characterization of Fluorescent Nanodiamonds with Different Nitrogen Contents for Biological Application
指導教授: 張煥正
Chang, Huan-Cheng
陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 72
中文關鍵詞: 螢光奈米鑽石氮含量生物標記
英文關鍵詞: Fluorescent nanodiamond, nitrogen content, bio-labeling
論文種類: 學術論文
相關次數: 點閱:73下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 螢光奈米鑽石(fluorescent nanodiamond) 是一種擁有許多獨特性質的新穎奈米材料,螢光奈米鑽石具有極佳的光穩定性並具有非常好的生物相容性,而且其表面容易修飾一些特定的官能基團,如果我們能增加螢光奈米鑽石的螢光強度,將更有助於我們在生物標記(bio-label)上的應用。
    具有 N-V0 及 N-V- 缺陷中心(defect center)的螢光奈米鑽石是最常使用的紅色螢光奈米鑽石(red-FND),我們推估,如果增加奈米鑽石中的氮含量,有助於更多N-V0 及 N-V- 缺陷中心(defect center)產生,將使得螢光奈米鑽石放出的螢光強度更高,有利於我們在生物顯影上的應用。因此,我們利用擴散反射紅外線傅立葉轉換光譜法 Diffuse Reflectance Infrared Fourier Transform (DRIFT) Spectroscopy,偵測不同鑽石材料,並且依據單聲子區域 (1000-1400cm-1) 有獨自的特徵吸收峰來推算不同鑽石材料所含的氮含量,由於起初量測的鑽石粒徑均為10~40微米,因此我們再利用3維高能量球磨機 (3D-Ball mill machine)將這些不同氮含量的鑽石材料研磨並分離出粒徑約100奈米的不同氮含量奈米鑽石,接續再利用我們實驗室自行架設的離子佈植設備(40KeV Helium beam)將這些不同氮含量的奈米鑽石製作成不同氮含量的100奈米螢光鑽石,以利我們進行探討與應用。
    經由本篇論文研究後,得知並非氮含量越高的螢光奈米鑽石其螢光強度就越強,根據研究指出,氮含量約為 ~157 ppm時 (Yellow RVD sample),會有最高的螢光強度表現,其螢光強度為我們實驗室原本所生產的Ele6_100奈米螢光鑽石的兩倍;另外,我們直接將Ele6_100奈米螢光鑽石利用3維高能量球磨機研磨,經過處理後,可以得到30奈米螢光鑽石,其螢光強度為原始我們實驗室自行生產的35奈米螢光鑽石的3~4倍,因此我們不僅僅找尋到螢光強度更高的螢光鑽米鑽石,也成功地製備粒徑小、螢光強度高的30奈米螢光鑽石,以利我們接續的生物顯影以及光學上的研究及應用。

    Fluorescent nanodiamond (FND) containing a high density of negatively charged nitrogen-vacancy centers (NV–) as built-in fluorophores has recently emerged as a promising tool for bioimaging owing to its excellent photostability, high biocompatibility, and facile surface modification. However, compared to that of quantum dots, organic dyes, and fluorescent proteins, its fluorescent intensity is not sufficiently high enough for practical applications. In this thesis, we explore the possibility of increasing the density of NV– in FNDs by using nitrogen-rich type Ib diamond powders.
    The nanodiamonds (size ~ 100 nm) used in this work were prepared by ball-milling of microdiamonds, in which the density of neutral, atomically dispersed nitrogen atoms ([N0]) was measured by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). These nanodiamonds, with known nitrogen densities of 100 − 400 ppm, were then converted to FNDs by radiation damage using a 40-KeV He+ beam, followed by thermal annealing. We found that the fluorescent intensity of the FND so prepared is not in linear proportion to [N0]. The FND with [N0] ~ 157 ppm has the highest fluorescence intensity, which is at least 2-fold higher than that of our standard FND samples made of diamonds from Element Six. Furthermore, an increase of the fluorescence intensity by 3 − 4 folds was achieved for 30-nm FNDs prepared by ball-milling of the 100-nm FNDs, compared to that of 35-nm FNDs prepared directly from pristine nanodiamonds. We conclude that the methods developed in this work can not only increase the fluorescent intensity but also decrease the particle size of the FND without significant loss of the NV– density. These particles are well suited for bioimaging applications.

    Abstract I 摘要 III 目錄 V 圖目錄 VIII 表目錄 X Chapter 1 緒論 1 1.1 前言 1 1.2 奈米鑽石之結構與特性 4 1.3 奈米鑽石的總類 5 1.4 奈米鑽石的缺陷中心(Defect center) 7 1.5 螢光標記方式 9 1.5.1 CD44 glycoprotein 9 1.5.2 Glycolipid receptor ganglioside GM1 10 1.6 研究動機 12 Chapter2 實驗藥品與儀器介紹 13 2.1 實驗藥品 13 2.2 實驗儀器 14 2.2.1 離子束佈植裝置(Ion beam implantation) 14 2.2.2 管狀高溫爐(Tube furnace): 17 2.2.3 三維單研磨罐高能量球磨機 18 2.2.4 螢光光譜儀(Fluorescence Spectrometer) 19 2.2.5 擴散反射紅外線傅立葉轉換光譜法(DRIFT) 21 Chapter 3 實驗方法 22 3.1 GR1 center(V0) 鑽石製備 22 3.2 100奈米紅色螢光奈米鑽石樣品製備 24 3.3 3維球磨(3-D Ball mill)與差速離心法(differential centrifugation)分離不同粒徑之奈米鑽石 27 3.4 30奈米螢光鑽石新製程 28 3.5 不同氮含量螢光鑽石製備 29 3.6 螢光光譜測量 30 Chapter 4 結果與討論 32 Part I - GR1 center 吸收光譜/螢光光譜探討 32 4.1.1 天然鑽石單晶 32 4.1.1.1 天然鑽石單晶 – FTIR-DRIFT 32 4.1.1.2 天然鑽石單晶 – UV-VIS 吸收光譜 34 4.1.1.3 天然鑽石單晶 – GR1 center 螢光光譜圖 36 4.1.2 天然鑽石粉末 38 4.1.2.1 天然鑽石粉末 –UV-VIS 吸收光譜 38 4.1.2.2 天然鑽石粉末 –GR1 center Dose dependent 39 Part II – 3維球磨(3D-Ball mill) Ele6_100nm-rFND 41 4.2.1 3D-Ball mill Ele6_100nmrFND – 粒徑分布 41 4.2.2 3D-Ball mill Ele6_100nmrFND – 螢光強度變化 43 4.2.3 3D-Ball mill Ele6_100nmrFND – 材料與球磨影響 45 4.2.4 3D-Ball mill time dependent – 球磨時間的影響 48 Part III –不同氮含量的螢光鑽石及螢光光譜探討 51 4.3.1 不同氮含量鑽石FTIR—DRIFT 光譜 51 4.3.2 製備100nm不同氮含量螢光奈米鑽石及螢光光譜探討 53 Chapter 5 結論 58 Chapter 6 參考文獻 59

    1. Schröder, U.; Sabel, B. A., Nanoparticles, a drug carrier system to pass the blood-brain barrier, permit central analgesic effects of i.v. dalargin injections. Brain Research 1996, 710 (1-2), 121-124.
    2. Neugart, F.; Zappe, A.; Jelezko, F.; Tietz, C.; Boudou, J. P.; Krueger, A.; Wrachtrup, J., Dynamics of Diamond Nanoparticles in Solution and Cells. Nano Letters 2007, 7 (12), 3588-3591.
    3. Yu, S.-J.; Kang, M.-W.; Chang, H.-C.; Chen, K.-M.; Yu, Y.-C., Bright Fluorescent Nanodiamonds: No Photobleaching and Low Cytotoxicity. Journal of the American Chemical Society 2005, 127 (50), 17604-17605.
    4. Weissleder, R.; Ntziachristos, V., Shedding light onto live molecular targets. Nat Med 2003, 9 (1), 123-128.
    5. Johnson, I., Review: Fluorescent probes for living cells Histochemical Journal 1999, 7 (3), 123-140.
    6. Tsien, R. Y., The Green Fluorescent Protein. Annual Review of Biochemistry 1998, 67 (1), 509-544.
    7. Jennifer Lippincott-Schwartz, N. A.-B. a. G. H. P., Review: Photobleaching and photoactivation: following protein dynamics in living cells. Nature Cell Biology 2003, 5, S7-S14.
    8. X. Michalet, F. F. P., L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, S. Weiss, Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science 2005, 307, 538-544.
    9. Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N., Probing the Cytotoxicity of Semiconductor Quantum Dots. Nano Letters 2003, 4 (1), 11-18.
    10. Su, Y.; He, Y.; Lu, H.; Sai, L.; Li, Q.; Li, W.; Wang, L.; Shen, P.; Huang, Q.; Fan, C., The cytotoxicity of cadmium based, aqueous phase - Synthesized, quantum dots and its modulation by surface coating. Biomaterials 2009, 30 (1), 19-25.
    11. Quantum-Dot Leap. Science News Online. Retrieved on 2005-06-17
    12. Electric Field Assisted Assembly of Functionalized Quantum Dots into Multiple Layer Thin Films D.A. Dehlinger, B.D. Sullivan, S. Esener and M.J. Heller
    13. Fu, C.-C.; Lee, H.-Y.; Chen, K.; Lim, T.-S.; Wu, H.-Y.; Lin, P.-K.; Wei, P.-K.; Tsao, P.-H.; Chang, H.-C.; Fann, W., Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proceedings of the National Academy of Sciences 2007, 104 (3), 727-732.
    14. Schrand, A. M.; Huang, H.; Carlson, C.; Schlager, J. J.; sawa, E.; Hussain, S. M.; Dai, L., Are Diamond Nanoparticles Cytotoxic? The Journal of Physical Chemistry B 2006, 111 (1), 2-7.
    15. Nguyen, T. T.-B.; Chang, H.-C.; Wu, V. W.-K., Adsorption and hydrolytic activity of lysozyme on diamond nanocrystallites. Diamond and Related Materials 2007,16 (4-7), 872-876.
    16. Hui, Y. Y.; Zhang, B.; Chang, Y.-C.; Chang, C.-C.; Chang, H.-C.; Hsu, J.-H.; Chang, K.; Chang, F.-H., Two-photon fluorescence correlation spectroscopy of lipid-encapsulated fluorescent nanodiamonds in living cells. Opt. Express 2010, 18 (6), 5896-5905.
    17. Xing, Y.; Dai, L., Nanodiamonds for nanomedicine. Nanomedicine 2009, 4 (2), 207-218.
    18. Vaijayanthimala, V.; Chang, H.-C., Functionalized fluorescent nanodiamonds for biomedical applications. Nanomedicine 2009, 4 (1), 47-55.
    19. Davies, G., Properties and Growth of Diamond. the Institution of Electric Engineers: London, 1994.
    20. G. Davies and M. F. Hamer, Proc. R. Soc. London, Ser. A. 1976,348,285
    21. S. C. Lawson, D. Fisher, D. C. Hunt, and M. E. Newton, J. Phys.: Condens.Matter ,1998,10, 6167.
    22. G. Davies, J. Phys. C.1972 ,5, 2534
    23. Y. Mita, Y. Nisida, K. Suito, A. Onodera, and S. Yazu, J. Phys.:
    Condens.Matter ,1990,2, 8567
    24. J. A. van Wyk and J. H. N. Loubser, J. Phys.: Condens. matter ,1993,5, 3019
    25. Jones, R. G., J. P., Theory of aggregation of nitrogen in diamond. 2000.
    26. Chang, H.-C.; et al., Nanodiamond as a Possible Carrier of Extended Red Emission. The Astrophysical Journal Letters 2006, 639 (2), L63.
    27. Hauptschein, R.S. et al., 2005. Functional proteomic screen identifies a modulating role for CD44 in death receptor-mediated apoptosis. Cancer Res. 65, 1887–1896.
    28. CD44 in Cancer. Critical Reviews in Clinical Laboratory Sciences 2002, 39, 527-579.
    29. Naor, D.; Sionov, R. V.; Ish-Shalom, D., CD44: Structure, Function and Association with the Malignant Process. In Advances in Cancer Research, George, F. V. W.; George, K., Eds. Academic Press: 1997; Vol. Volume 71, pp 241-319.
    30. Lingwood, D.; Simons, K., Lipid Rafts As a Membrane-Organizing Principle. Science 2010, 327 (5961), 46-50.
    31. Soenen, S. J. H.; Hodenius, M.; Schmitz-Rode, T.; De Cuyper, M., Protein-stabilized magnetic fluids. Journal of Magnetism and Magnetic Materials 2008, 320 (5), 634-641.
    32. Lencer, W. I.; Tsai, B., The intracellular voyage of cholera toxin: going retro. Trends in Biochemical Sciences 2003, 28 (12), 639-645.
    33. Gordon Davies, Current problems in diamond: towards a quantitative understanding. Physica B 273-274, 1999, 15-23,
    34. 梁中翥,梁静秋,郑娜,贾晓鹏,李桂菊, 掺氮金刚石的光学吸收与氮杂质含量的分析研究, Chin.Phys.Soc, vol.58,No.11, 2009
    35. Aharonovich et al, Producing optimized ensembles of nitrogen-vacancy color centers for quantum information applications. J. Appl. Phys. 106, 124904 2009

    下載圖示
    QR CODE