簡易檢索 / 詳目顯示

研究生: 龔品睿
Pin-Jui Kung
論文名稱: 以chaperone、proteasome為目標的多麩醯胺小腦萎縮症治療策略
Therapeutic Strategies Targeting Chaperone and Proteasome for PolyQ-mediated SCA
指導教授: 李桂楨
Lee, Guey-Jen
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 45
中文關鍵詞: 小腦萎縮症神經退化熱休克蛋白蛋白酶體
英文關鍵詞: spinocerebellar ataxias (SCA), neurodegeneration, heat shock protein, proteasome
論文種類: 學術論文
相關次數: 點閱:62下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在多麩醯胺居間的疾病中,轉譯CAG三核苷酸重複的擴增造成各自的蛋白中包含一長的多麩醯胺鏈,在神經細胞之細胞核和細胞質中形成聚集。熱休克蛋白可防止蛋白錯誤摺疊及聚集。泛素蛋白酶體系統的活化亦會幫助不正常摺疊蛋白的降解。本研究目標在建立細胞系統,用來鑑定可增強熱休克蛋白/蛋白酶體功能的化合物/中草藥,來治療多麩醯胺疾病。利用螢光報告基因的細胞檢測,本研究發現NH014-1及NC001-8化合物可增強HSF1、HSPA8和HSPA1A表現,NH005和NH006中草藥可增強蛋白酶體功能。另外,本研究建立誘導表現SCA17 TBP/Q36~79的Flp-In SH-SY5Y細胞株,螢光顯微鏡檢視及Metamorph軟體分析顯示,retinoic acid誘導分化後,表現的TBP/Q79蛋白形成聚集,並伴隨神經纖維生長減緩(包含突出、分支數)。化合物/中草藥處理表現TBP/Q79及誘導神經分化的SH-SY5Y細胞後,聚集抑制的情形顯示NC001-8、NH005、NH006為有潛能治療策略。

    In polyQ-mediated disorders, the expansions of translated CAG repeats in the disease genes result in long polyQ tracts in the respective proteins, leading to intranuclear and cytoplasmic accumulation of aggregated polyQ proteins inside neurons. The molecular chaperones act in preventing protein misfolding and aggregation. Induction of ubiquitin proteasome also enhances the clearance of aggregate-prone proteins. This study set up cell systems to identify compounds/herbs enhancing chaperone/proteasome function for effective treatment of polyQ diseases. Using fluorescent reporter cell-based assay, pure compounds NH014-1 and NC001-8 were shown to enhance HSF1, HSPA8 and HSPA1A expression and Chinese herbs NH005 and NH006 were demonstrated to enhance proteasome function. In addition, Flp-In SH-SY5Y cells with SCA17 TBP/Q36~79-GFP expression in an inducible fashion were established. In retinoic acid-induced differentiated SH-SY5Y cells, fluorescent microscopy examination revealed that the expressed TBP/Q79-GFP formed aggregates, accompanying with reducing neurite outgrowth (including processes and branches) assessed by Metamorph software. With assessing aggregate suppression, the potential therapeutic strategies can also be demonstrated upon treatment of TBP/Q79-expressing differentiated SH-SY5Y cells with NC001-8, NH005 and NH006.

    Index Index………………………………………………………………… I Abstract (Chinese)…………………………………………………... III Abstract……………………………………………………………… IV List of figures………………………………………………………... V Introduction………………………………………………………….. 1 Poly glutamine expansion disease and spinocerebellar ataxia type 17…………………………………………………………... 1 PolyQ neurotoxicity-protein aggregation, misfolding and clearance........................................................................................ 2 Heat-shock proteins and related therapeutic strategies………….. 2 Ubiquitin proteasome system and related therapeutic strategies... 4 Aims…………………………………………………………………. 6 Materials and Methods…………………………………………….... 7 I. To set up cell system for identifying lead compounds enhancing chaperone/proteasome function………………………………..... 7 Cell culture…………………………………………………….... 7 MTT assay…………………………………………………….… 7 Generation of Flp-InTM-293 triple fluorescent reporter cells……. 7 Characterization of triple fluorescent reporter cells…………..… 8 Screening of compounds enhancing chaperone function……….. 8 Western blotting………………………………………………..... 9 Characterization of GFPu cells…………………………….….…. 9 Screening of compounds enhancing proteasome function…..….. 10 II. To generateneuroblastoma SH-SY5Y lines expressing normal and expanded TBP…………………………………….….......… 10 Cell culture…………………………………………………..….. 10 Flp-In SH-SY5Y host line…………………………………...….. 10 Stably induced SH-SY5Y isogenic TBP lines.......................….... 11 Real time quantitative PCR (RT-PCR)…………………..……… 12 Western blotting…………………………………………..……... 13 Aggregation and neuronal phenotype examination..……….....… 13 III. To derive candidate compounds using SH-SY5Y cell model …... 14 Aggregation analysis…………………………………….…..….. 14 Western blotting………………………………………………..... 14 Results……………………………………………………………….. 15 I. Tested compounds/herbs and cytotoxicity……..………...……... 15 II. The cell system for identifying lead compounds enhancing chaperone/proteasome function……………………....……..….. 15 III. Generation and characterization of neuroblastoma SH-SY5Y lines expressing normal and expanded TBP.................................. 17 IV. Therapeutic effects of the identified compounds/herbs in SH-SY5Y cell model………………………………………….... 18 Discussion…………………………………………………………… 20 References…………………………………………………...………. 24

    References

    Adachi H, Katsuno M, Waza M, Minamiyama M, Tanaka F, Sobue G (2009) Heat shock proteins in neurodegenerative diseases: pathogenic roles and therapeutic implications. Int J Hyperthermia 25:647-654.
    Aggarwal BB, Ichikawa H (2005) Molecular targets and anticancer potential of indole-3-carbinol and its derivatives. Cell Cycle 4:1201-1215.
    Arawaka S, Machiya Y, Kato T (2010) Heat shock proteins as suppressors of accumulation of toxic prefibrillar intermediates and misfolded proteins in neurodegenerative diseases.Curr Pharm Biotechnol 11:158-166.
    Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292:1552-1555.
    Bonini NM (2002) Chaperoning brain degeneration. Proc Natl Acad Sci USA 99 Suppl 4:16407-16411.
    Chai Y, Koppenhafer SL, Bonini NM, Paulson HL (1999) Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease. J Neurosci 19:10338-10347.
    Chen CM, Lane HY, Wu YR, Ro LS, Chen FL, Hung WL, Hou YT, Lin CY, Huang SY, Chen IC, Soong BW, Li ML, Hsieh-Li HM, Su MT, Lee-Chen GJ (2005) Expanded trinucleotide repeats in the TBP/SCA17 gene mapped to chromosome 6q27 are associated with schizophrenia. Schizophr Res 78:131-136.
    Chen CM, Lee LC, Soong BW, Fung HC, Hsu WC, Lin PY, Huang HJ, Chen FL, Lin CY, Lee-Chen GJ, Wu YR (2010) SCA17 repeat expansion: mildly expanded CAG/CAA repeat alleles in neurological disorders and the functional implications. Clin Chim Acta 411:375-380.
    Cheng AC, Jian CB, Huang YT, Lai CS, Hsu PC, Pan MH (2007) Induction of apoptosis by Uncaria tomentosa through reactive oxygen species production, cytochrome c release, and caspases activation in human leukemia cells. Food Chem Toxicol 45:2206-2218.
    Chyan YJ, Poeggeler B, Omar RA, Chain DG, Frangione B, Ghiso J, Pappolla MA (1999) Potent neuroprotective properties against the Alzheimer β-amyloid by an endogenous melatonin-related indole structure, indole-3-propionic acid. J Biol Chem 274:21937-21942.
    Cummings CJ, Mancini MA, Antalffy B, DeFranco DB, Orr HT, Zoghbi HY (1998) Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet 19:148-154.
    Cummings CJ, Sun Y, Opal P, Antalffy B, Mestril R, Orr HT, Dillmann WH, Zoghbi HY (2001) Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum Mol Genet 10:1511-1518.
    De Martino L, Martinot JL, Franceschelli S, Leone A, Pizza C, De Feo V (2006) Proapoptotic effect of Uncaria tomentosa extracts. J Ethnopharmacol 107:91-94.
    DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277:1990-1993.
    Fujikake N, Nagai Y, Popiel HA, Okamoto Y, Yamaguchi M, Toda T (2008) Heat shock transcription factor 1-activating compounds suppress polyglutamine-induced neurodegeneration through induction of multiple molecular chaperones. J Biol Chem 283:26188-26197.
    Fujimoto M, Takaki E, Hayashi T, Kitaura Y, Tanaka Y, Inouye S, Nakai A. (2005) Active HSF1 significantly suppresses polyglutamine aggregate formation in cellular and mouse models. J Biol Chem 280:34908-34916.
    Garcia Prado E, García Gimenez MD, De la Puerta Vázquez R, Espartero Sánchez JL, Sáenz Rodríguez MT (2007) Antiproliferative effects of mitraphylline, a pentacyclic oxindole alkaloid of Uncaria tomentosa on human glioma and neuroblastoma cell lines. Phytomedicine 14:280-284.
    Gilon T, Chomsky O, Kulka RG (1998) Degradation signals for ubiquitin system proteolysis in Saccharomyces cerevisiae. EMBO 17:2759-2766.
    Gostout B, Liu Q, Sommer SS (1993) "Cryptic" repeating triplets of purines and pyrimidines (cRRY(i)) are frequent and polymorphic: analysis of coding cRRY(i) in the proopiomelanocortin (POMC) and TATA-binding protein (TBP) genes. Am J Hum Genet 52:1182-1190.
    Huang Q, Figueiredo-Pereira ME (2010) Ubiquitin/proteasome pathway impairment in neurodegeneration: therapeutic implications. Apoptosis 15:1292-1311.
    Huang SH (2011) Screening of novel compounds and oxidative stress studies using SCA17 cell model. NTNU Master's Thesis.
    Katsuno M, Sang C, Adachi H, Minamiyama M, Waza M, Tanaka F, Doyu M, Sobue G (2005) Pharmacological induction of heat-shock proteins alleviates polyglutamine-mediated motor neuron disease. Proc Natl Acad Sci USA 102:16801-16806.
    Kobayashi Y, Kume A, Li M, Doyu M, Hata M, Ohtsuka K, Sobue G (2000) Chaperones Hsp70 and Hsp40 suppress aggregate formation and apoptosis in cultured neuronal cells expressing truncated androgen receptor protein with expanded polyglutamine tract. J Biol Chem 275:8772-8778.
    Kobayashi Y, Sobue G (2001) Protective effect of chaperones on polyglutamine diseases. Brain Res Bull 56:165-168.
    Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M, Saito M, Yamada M, Takahashi H, Tsuji S (1999) A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum Mol Genet 8:2047-2053.
    Lasek K, Lencer R, Gaser C, Hagenah J, Walter U, Wolters A, Kock N, Steinlechner S, Nagel M, Zühlke C, Nitschke MF, Brockmann K, Klein C, Rolfs A, Binkofski F (2006) Morphological basis for the spectrum of clinical deficits in spinocerebellar ataxia 17 (SCA17). Brain 129:2341-2352.
    Lee LC, Chen CM, Chen FL, Lin PY, Hsiao YC, Wang PR, Su MT, Hsieh-Li HM, Hwang JC, Wu CH, Lee GC,Singh S, Lin Y, Hsieh SY, Lee-Chen GJ, Lin JY (2009) Altered expression of HSPA5, HSPA8 and PARK7 in spinocerebellar ataxia type 17 identified by 2-dimensional fluorescence difference in gel electrophoresis. Clin Chim Acta 400:56-62.
    Lehman NL (2009) The ubiquitin proteasome system in neuropathology. Acta Neuropathol 118:329-347.
    Lin IS, Wu RM, Lee-Chen GJ, Shan DE, Gwinn-Hardy K (2007) The SCA17 phenotype can include features of MSA-C, PSP and cognitive impairment. Parkinsonism Relat Disord 13:246-249.
    Maltecca F, Filla A, Castaldo I, Coppola G, Fragassi NA, Carella M, Bruni A, Cocozza S, Casari G, Servadio A, De Michele G (2003) Intergenerational instability and marked anticipation in SCA-17. Neurology 61:1441-1443.
    McCampbell A, Taylor JP, Taye AA, Robitschek J, Li M, Walcott J, Merry D, Chai Y, Paulson H, Sobue G, Fischbeck KH (2000) CREB-binding protein sequestration by expanded polyglutamine. Hum Mol Genet 9:2197-2202.
    Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K, Nagashima T, Ikeda S, Tsuji S, Kanazawa I (2001) SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet 10:1441-1448.
    Perutz M (1994) Polar zippers: their role in human disease.Protein Sci 3:1629-1637.
    Poeggeler B, Sambamurti K, Siedlak SL, Perry G, Smith MA, Pappolla MA (2010) A novel endogenous indole protects rodent mitochondria and extends rotifer lifespan. PLoS One 5:e10206.
    Roeder RG (2005) Transcriptional regulation and the role of diverse coactivators in animal cells. FEBS Lett 579:909-915.
    Rogan EG (2006) The natural chemopreventive compound indole-3-carbinol: state of the science. In Vivo 20:221-228.
    Rolfs A, Koeppen AH, Bauer I, Bauer P, Buhlmann S, Topka H, Schöls L, Riess O (2003) Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17). Ann Neurol 54:367-375.
    Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10 Suppl:S10-S17.
    Sakahira H, Breuer P, Hayer-Hartl MK, Hartl FU (2002) Molecular chaperones as modulators of polyglutamine protein aggregation and toxicity. Proc Natl Acad Sci USA 99 Suppl 4:16412-16418.
    Schmidt T, Lindenberg KS, Krebs A, Schöls L, Laccone F, Herms J, Rechsteiner M, Riess O, Landwehrmeyer GB (2002) Protein surveillance machinery in brains with spinocerebellar ataxia type 3: redistribution and differential recruitment of 26S proteasome subunits and chaperones to neuronal intranuclear inclusions. Ann Neurol 51:302-310.
    Silveira I, Miranda C, Guimarães L, Moreira MC, Alonso I, Mendonça P, Ferro A, Pinto-Basto J, Coelho J, Ferreirinha F, Poirier J, Parreira E, Vale J, Januário C, Barbot C, Tuna A, Barros J, Koide R, Tsuji S, Holmes SE, Margolis RL, Jardim L, Pandolfo M, Coutinho P, Sequeiros J (2002) Trinucleotide repeats in 202 families with ataxia: a small expanded (CAG)n allele at the SCA17 locus. Arch Neurol 59:623-629.
    Skaggs HS, Xing H, Wilkerson DC, Murphy LA, Hong Y, Mayhew CN, Sarge KD (2007) HSF1-TPR interaction facilitates export of stress-induced HSP70 mRNA. J Biol Chem 282:33902-33907.
    Sorokin AV, Kim ER, Ovchinnikov LP (2010) Proteasome system of protein degradation and processing. Biochemistry (Mosc) 74:1411-1442.
    Stackman RW, Eckenstein F, Frei B, Kulhanek D, Nowlin J, Quinn JF (2003) Prevention of age-related spatial memory deficits in a transgenic mouse model of Alzheimer's disease by chronic Ginkgo biloba treatment. Exp Neurol 184:510-520.
    Sun XM, Butterworth M, MacFarlane M, Dubiel W, Ciechanover A, Cohen GM (2004) Caspase activation inhibits proteasome function during apoptosis. Mol Cell 14:81-93.
    Takahashi T, Katada S, Onodera O (2010) Polyglutamine diseases: where does toxicity come from? what is toxicity? where are we going? J Mol Cell Biol 2:180-191.
    Warrick JM, Chan HY, Gray-Board GL, Chai Y, Paulson HL, Bonini NM (1999) Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet 23:425-428.
    Wong HK, Bauer PO, Kurosawa M, Goswami A, Washizu C, Machida Y, Tosaki A, Yamada M, Knöpfel T, Nakamura T, Nukina N (2008) Blocking acid-sensing ion channel 1 alleviates Huntington’s disease pathology via an ubiquitin-proteasome system-dependent mechanism. Hum Mol Genet 17:3223-3235.
    Wu WR, Zhu XZ (1999) Involvement of monoamine oxidase inhibition in neuroprotective and neurorestorative effects of Ginkgo biloba extract against MPTP-induced nigrostriatal dopaminergic toxicity in C57 mice. Life Sci 65:157-164.
    Wu YR, Lin HY, Chen CM, Gwinn-Hardy K, Ro LS, Wang YC, Li SH, Hwang JC, Fang K, Hsieh-Li HM, Li ML, Tung LC, Su MT, Lu KT, Lee-Chen GJ (2004) Genetic testing in spinocerebellar ataxia in Taiwan: expansions of trinucleotide repeats in SCA8 and SCA17 are associated with typical Parkinson’s disease. Clin Genet 65:209-214.
    Wu YR, Fung HC, Lee-Chen GJ, Gwinn-Hardy K, Ro LS, Chen ST, Hsieh-Li HM, Lin HY, Lin CY, Li SN, Chen CM (2005) Analysis of polyglutamine-coding repeats in the TATA-binding protein in different neurodegenerative diseases. J Neural Transm 112:539-546.
    Yan D, Saito K, Ohmi Y, Fujie N, Ohtsuka K (2004) Paeoniflorin, a novel heat shock protein-inducing compound.Cell Stress Chaperones 9:378-389.
    Zhang Z, Peng D, Zhu H, Wang X (2012) Experimental evidence of Ginkgo biloba extract EGB as a neuroprotective agent in ischemia stroke rats. Brain Res Bull 87:193-198.

    下載圖示
    QR CODE