簡易檢索 / 詳目顯示

研究生: 周尚威
Chou Shang-Wei
論文名稱: 磁性合金粒子的合成及應用
Synthesis and application of magnetic alloy nanocrystal
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 75
中文關鍵詞: 鐵鉑粒子鐵鈷粒子磁性核磁共振電腦斷層
論文種類: 學術論文
相關次數: 點閱:90下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文中,可調控的鐵鉑合金奈米結構生長被系統地研究。鐵鉑的octapod, cuboctahedron, 以及 nanocube都成功地經由cuboctahedral seed生長而成,同時也藉由高解析電子顯微鏡來瞭解其構造。在溶液反應中,成長晶種上的特殊surfactant-facet bindings可藉由調控反應條件而產生同時也造成了晶種上晶面生長速度的差異。因此我們認為這些鐵鉑奈米結構的生長機制主要是由於cuboctahedral seed上 {111} 及 {100} 晶面生長速率的不同所造成的。特別的是,鐵鉑octapod的奈米結構具有最高的coercivity 及 blocking temperature。主要的因素是octapod本身擁有相當高的體積表面積比及較複雜的表面晶面。另一方面,我們藉由控制反應時間而成功合成不同尺寸的鐵鈷奈米粒子。生長機制主要是由於具有低晶格能的FexCo1-x在反應中產生了Ostwald ripening。同時由XRD的結果可以觀察到鐵鈷奈米粒子結構相的轉變和磁無效層的生成。這樣結構上的變化明顯的影響鐵鈷奈米粒子飽和磁化率的數值。
    最後,我們製備3, 6 和12 nm的水溶性鐵鉑奈米粒子,同時這些粒子擁有相當高的生物相容性及低溶血性。特別的是,在生物器官分佈分析中,3 nm 水溶性鐵鉑奈米粒子在腦中表現出很高的濃度。另外12 nm的水溶性鐵鉑奈米粒子則是有最高的循環半生期及體外CT/MRI顯影效果。我們進一步驗證修飾Anti-Her2抗體的鐵鉑奈米粒子在MBT2和被剔除Her2/neu 基因的MBT2細胞上可進行標定顯影。而12 nm鐵鉑奈米粒子在CT及MRI的MBT2細胞標定顯影效果優於3 nm鐵鉑奈米粒子。另外也將修飾Anti-Her2抗體的12 nm鐵鉑奈米粒子藉由靜脈注射至癌化動物體內,結果證明以鐵鉑奈米粒子為顯影劑可以增強CT/MRI顯影效果並且辨識出癌症位置。這些成果指出鐵鉑奈米粒子有潛力成為臨床檢驗上新穎且多工的分子顯影劑。

    The controlled growth of alloy FePt nanostructures was investigated systematically. FePt octapod, cuboctahedron, and nanocube were successfully synthesized from a cuboctahedral seed and examined by the high-resolution transmission electron microscopy (HRTEM). In a solution reaction, the specific surfactant-facet bindings on the growth seed were generated and then, the growth rate of crystal facets on seed was differentiated by the djustments of reaction parameters. Therefore, the formations of FePt nanostructures were mainly attributed to the differences in the growth rate between the {111} and {100} planes of cuboctahedral seeds. In particular, the highest coercivity and blocking temperature of octapods are mainly due to its higher surface to volume ratio and more structural facets. On the other hand, the FeCo particles with different sizes were synthesized through controlling the reaction period. The process of Ostwald ripening was discovered in the FexCo1-x system due to the low lattice energy. Based on the XRD patterns, the transformation of structural phase and formation of magnetically dead layers was observed. Also, the saturated magnetization of FexCo1-x nanoparticles was influenced by their structural changes obviously.
    Finally, the water-soluble nanoparticles with the sizes of 3, 6 and 12 nm in diameters were prepared and presented excellent biocompatibility and hemocompatibility. The bio-distribution analyses indicated that 3nm-FePt nanoparticles exhibited the highest brain concentration. Moreover, 12 nm-FePt nanoparticles exerted the highest circulation half-life and image contrast effect in the
    in vitro CT/MRI test. Anti-Her2 antibody conjugated FePt nanoparticles demonstrated molecular expression dependent CT/MRI dual imaging contrast effect in MBT2 cell line and its Her2/neu gene knock out counterpart. The 12 nm-FePt outperformed 3nm-FePt in both imaging modalities. Selective contrast enhancement of Her2/neu overexpression cancer lesions in both CT and MRI was found in tumor bearing animal after tail vein injection of the nanoparticles. These results indicate the potential of FePt nanoparticles to serve as novel multi-modal molecular imaging contrast agents in clinical settings.

    Abstract 1 1. Introduction 5 1-1. Shape control of magnetic alloy nanocrystal 5 1-2 Size control of magnetic alloy nanocrystal 9 1-3 Application in dual contrast agent 12 2. Experimental section 16 2-1. Synthesis of FePt nanocrystals with different shapes 16 2-2. Synthesis of alloy FexCo1-x nanoparticle with different sizes 17 2-3. Preparation of FePt dual contrast agent with different sizes 18 2-4. In vitro and in vivo MRI/CT test 22 3. Results and Discussions 27 3-1. Shape control of FePt nanocrystals 27 3-1-1. Results 27 3-1-2. Discussions 30 3-1-3. Conclusions 37 3-2. Size control of FexCo1-x nanoparticles 38 3-2-1. Results and discussions 38 3-2-2. Conclusions 41 3-3. Dual contrast agent for MRI/CT 42 3-3-1. Characterization of FePt nanoparticles 42 3-3-2. Biocompatibility 43 3-3-3. Biodistribution 44 3-3-4. In vitro MR and CT imaging 45 3-3-5. Selective in vitro dual modality targeting molecular imaging of Her2/neu. 48 3-3-6. In vivo targeting molecular imaging of CT and MRI 50 3-3-7. Conclusions 51 4. Figures, captions and tables 52 Figure 1. TEM and HRTEM image of FePt octapod 52 Figure 2. TEM and HRTEM image of FePt cuboctahedron 53 Figure 3. TEM and HRTEM image of FePt nanocube 53 Figure 4. XRD patterns of FePt nanostructures 54 Figure 5. TEM and HRTEM image of FePt truncated cube and filled octapod 55 Figure 6. The schematic illustration of the formations of FePt nanostructures 56 Figure 7. The measurement of magnetic properties 57 Figure 8. Characterization of FexCo1-x nanoparticles with different sizes 58 Figure 9. The hysteresis loops of FexCo1-x nanoparticles 59 Figure 10. Characterization of FexCo1-x nanoparticles with highest magnetization 59 Figure 11. Characterization of FePt nanoparticles with different sizes 60 Figure 12. Biocompatibility of water-solvable FePt nanoparticles 61 Figure 13. Biodistribution of water-solvable FePt nanoparticles 62 Figure 14. In vitro MRI/CT test 63 Figure 15. FTIR spectra of FePt dual contrast agent 64 Figure 16. Selective in vitro dual contrast effect 65 Figure 17. In vivo MRI/CT test 66 Table 1. The synthetic parameters of FePt nanocrystal with different shape 16 Table 2. The synthetic parameters of FeCo nanoparticle with different size 17 5. References 67

    (1) Song, H. T.; Choi, J. S.; Huh, Y. M.; Kim, S.; Jun, Y. W.; Suh, J. S.; Cheon, J.; J. Am. Chem. Soc. 2005, 127, 9992.
    (2) Schneider, J. J. Adv. Mater. 2003, 13, 529-533.
    (3) Zeng, H.; Li, J.; Liu, J. P.; Wang, Z. L.; Sun, S. Nature 2002, 420, 395-398.
    (4) Chaubey, G. S.; Barcena, C.; Poudyal, N.; Rong, C.; Gao, J.; Sun, S.; Liu, J. P.; J. Am. Chem. Soc. 2007, 129, 7214.
    (5) Beecher, P.; Shevchenko, E. V.; Weller, H.; Quinn, A. J.; Redmond, G. Adv. Mater. 2005, 17, 1080.
    (6) Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Science 2000, 287, 1988.
    (7) (a) Seo, W. S.; Lee, J. H.; Suzuki, Y.; Mann, D.; Liu, Z.; Terashima, M.; Yang, P. C.; Mcconnell, M. V.; Nishimura, D. G.; Dai, H. Nature Mater. 2006, 5, 971; (b) Gu, H.; Ho, P. L.; Tsang, K. W. T.; Wang, L.; Xu, B.; J. Am. Chem. Soc. 2004, 125, 15702.
    (8) Suh, D.; Park, Y.; Ryu, H.; Sohn, Y. J.; Peak, M. C.; J. Magn. Magn. Mater. 2004, 272, 2299.
    (9) Park, S. J.; Kim, S.; Lee, S.; Khim, Z. G.; Char, K.; Hyeon, T., J. Am. Chem. Soc. 2000, 122, 8581.
    (10) Salazar-Alvarez, G.; Qin, J.; Sepelak, V.; Bergmann, I.; Vasilakaki, M.; Trohidou, K. N.; Ardisson, J. D.; Macedo, W. A. A.; Mikhaylova, M.; Muhammed, M.; Baro, M. D.; Nogues, J., J. Am. Chem. Soc. 2008, 130, 13234.
    (11) Yanes, R.; Chubykalo-Fesenko, O.; Kachkachi, H.; Garanin, D. A.; Evans, R.; Chantrell, R. W., Phys. Rev. B 2007, 76, 06441-6.
    (12) Puntes, V. F.; Krishnan, K. M.; Alivisatos, A. P., Science 2001, 291, 2115.
    (13) Jana, N. R.; Chen, Y. F.; Peng, X. G., Chem. Mater. 2004, 16, 3931.
    (14) Sun, Y. G.; Xia, Y. N., Science 2002, 298, 2176.
    (15) Bratlie, K. M.; Lee, H. J.; Komvopoulos, K.; Yang, P. D.; Somorjai, G. A., Nano Lett. 2007, 7, 3097.
    (16) Xiong,Y. J.; Xia, Y. N., Adv. Mater.2007, 19, 3385.
    (17) Chen, J. Y.; Lim, B.; Lee, E. P.; Xia, Y. N. Nano Today 2009, 4, 81.
    (18) Burda, C.; Chen, X. B.; Narayanan, R.; El-Sayed, M. A., Chem. Rev. 2005, 105, 1025.
    (19) Peng, Z. A.; Peng, X., J. Am. Chem. Soc. 2001, 123, 1389.
    (20) Zhao, F.; Rutherford, M.; Grisham, S. Y.; Peng, X., J. Am. Chem. Soc. 2009, 131, 5350.
    (21) Yin, Y.; Alivisatos, A. P., Nature 2005, 437, 664.
    (22) Hou, Y. L.; Xu, Z. C.; Sun, S. H., Angew. Chem. Int. Ed. 2007, 46, 6329
    (23) Jun, Y. W.; Choi, J. S.; Cheon, J., Angew. Chem. Int. Ed. 2006, 45, 3414.
    (24) Chen, M.; Kim, J.; Liu, J. P.; Fan, H. Y.; Sun, S. H. J. Am. Chem. Soc. 2006, 128, 7132.
    (25) Chen, M.; Pica, T.; Jiang, Y. B.; Li, P.; Yano, K.; Liu, J. P.; Datye, A. K.; Fan, H. Y., J. Am. Chem. Soc. 2007, 129, 6348.
    (26) Wei, X. W.; Zhu, G. X.; Liu, Y. J.; Ni, Y. H.; Song, Y.; Xu, Z., Chem. Mater. 2008, 20, 6248
    (27) Mokari, T. L.; Zhang, M. J.; Yang, P. D., J. Am. Chem. Soc. 2007, 129, 9864.
    (28) Ferrando, R.; Jellinek, J.; Johnston, R. L., Chem. Rev. 2008, 108, 845.
    (29) Coffey, K. R.; Parker, M. A.; Howard, J. K.; IEEE Trans. Magn. 1995, 31, 2737.
    (30) Sun, S. H. Adv. Mater. 2006, 18, 393.
    (31) Nguyen, H. L.; Howard, L. E. M.; Stinton, G. W.; Giblin, S. R.; Tanner, B. K.; Terry, I.; Hughes, A. K.; Ross, I. M.; Serres, A.; Evans, J. S. O. Chem. Mater. 2006, 18, 6414.
    (32) Liu, C.; Wu, X. W.; Klemmer, T.; Shukla, N.; Yang, X. M.; Weller, D.; Roy, A. G.; Tanase, M.; Laughlin, D. J. Phys. Chem. B 2004, 108, 6121.
    (33) Chen, M.; Liu, J. P.; Sun, S. H. J. Am. Chem. Soc.2004, 126, 8394.
    (34) Zhao, F.; Rutherford, M.; Grisham, S. Y.; Peng, X. G. J. Am. Chem. Soc.2009, 131, 5350.
    (35) Shevchenko, E. V.; Talapin, D. V.; Schnablegger, H.; Kornowski, A.; Festin, O.; Svedlindh, P.; Haase, M.; Weller, H. J. Am. Chem. Soc.2003, 125, 9090.
    (36) (a) Rogach, A. L.; Talapin, D. V.; Shenchenko, E. V.; Kornowski, A.; Haase, M.; Weller, H. Adv. Funct. Mater. 2002, 12, 653; (b) Ahrenstorf, K.; Heller, H.; Kornowski, A.; Broekaert, J. A. C.; Weller, H. Adv. Funct. Mater. 2008, 18, 3850.
    (37) Ostwald, W., Z. Phys. Chem. 1901, 37, 385.
    (38) Sugimoto, T.; Shiba, F. J. Phys. Chem. B 1999, 103, 3607.
    (39) Wagner, C. Z. Elektrochem. 1961, 65, 581.
    (40) Peng, Z. A.; Peng, X. J. Am. Chem. Soc. 2001, 123, 183.
    (41) Peng, X.; Wickham, J.; Alivisatos, A. P. J. Am. Chem. Soc. 1998, 120, 5343.
    (42) LaMer, V. K.; Dinegar, R. H., J. Am. Chem. Soc.1950, 72, 4847.
    (43) Bryson, J. M.; Fichter, K. M.; Chu, W. J.; Lee, J. H.; Li, J.; Madsen, L. A.; McLendon, P. M.; Reineke, T. M. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 16913.
    (44) Atanasijevic, T.; Shusteff, M.; Fam, P.; Jasanoff, A. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 14707.
    (45) Simberg, D.; Duza, T.; Park, J. H.; Essler, M.; Pilch, J.; Zhang, L. L.; Derfus, A. M.; Yang, M.; Hoffman, R. M.; Bhatia, S.; Sailor, M. J.; Ruoslahti, E. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 932.
    (46) Krause, W. Adv. Drug Delivery Rev. 1999, 37, 159.
    (47) Haller, C.; Hizoh, I. Invest. Radiol. 2004, 39, 149.
    (48) Hizoh, I.; Haller, C. Invest. Radiol. 2002, 37, 428.
    (49) Rabin, O.; Perez, J. M.; Grimm, J.; Wojtkiewicz, G.; Weissleder, R. Nat. Mater. 2006, 5, 118.
    (50) Kim, D.; Park, S.; Lee, J. H.; Jeong, Y. Y.; Jon, S. J. Am. Chem. Soc. 2007, 129, 7661.
    (51) Cheng, H. Y.; Nair, G.; Walker, T. A.; Kim, M. K.; Pardue, M. T.; Thule, P. M.; Olson, D. E.; Duong, T. Q. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 17525.
    (52) McEvoy, L. K.; Fennema-Notestine, C.; Roddey, J. C.; Hagler, D. J.; Holland, D.; Karow, D. S.; Pung, C. J.; Brewer, J. B.; Dale, A. M.; Initia, A. D. N. Radiology 2009, 251, 195.
    (53) Debouttiere, P. J.; Roux, S.; Vocanson, F.; Billotey, C.; Beuf, O.; Favre-Reguillon, A.; Lin, Y.; Pellet-Rostaing, S.; Lamartine, R.; Perriat, P.; Tillement, O. Adv. Func. Mater. 2006, 16, 2330.
    (54) Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Chem. Rev. 1999, 99, 2293.
    (55) Huh, Y. M.; Jun, Y. W.; Song, H. T.; Kim, S.; Choi, J. S.; Lee, J. H.; Yoon, S.; Kim, K. S.; Shin, J. S.; Suh, J. S.; Cheon, J. J. Am. Chem. Soc. 2005, 127, 12387.
    (56) Lim, Y. T.; Cho, M. Y.; Choi, B. S.; Lee, J. M.; Chung, B. H. Chem. Commun. 2008, 4930.
    (57) Jeong, U.; Teng, X. W.; Wang, Y.; Yang, H.; Xia, Y. N. Adv. Mater. 2007, 19, 33.
    (58) Shi, X. Y.; Wang, S. H.; Swanson, S. D.; Ge, S.; Cao, Z. Y.; Van Antwerp, M. E.; Landmark, K. J.; Baker, J. R. Adv. Mater. 2008, 20, 1671.
    (59) Tromsdorf, U. I.; Bigall, N. C.; Kaul, M. G.; Bruns, O. T.; Nikolic, M. S.; Mollwitz, B.; Sperling, R. A.; Reimer, R.; Hohenberg, H.; Parak, W. J.; Forster, S.; Beisiegel, U.; Adam, G.; Weller, H. Nano Letters 2007, 7, 2422.
    (60) Song, H. T.; Choi, J. S.; Huh, Y. M.; Kim, S.; Jun, Y. W.; Suh, J. S.; Cheon, J. J. Am. Chem. Soc. 2005, 127, 9992.
    (61) Wu, P. C.; Su, C. H.; Cheng, F. Y.; Weng, J. C.; Chen, J. H.; Tsai, T. L.; Yeh, C. S.; Su, W. C.; Hwu, J. R.; Tzeng, Y.; Shieh, D. B. Bioconjugate Chemistry 2008, 19, 1972.
    (62) Su, C. H.; Sheu, H. S.; Lin, C. Y.; Huang, C. C.; Lo, Y. W.; Pu, Y. C.; Weng, J. C.; Shieh, D. B.; Chen, J. H.; Yeh, C. S. J. Am. Chem. Soc. 2007, 129, 2139.
    (63) Regino, C. A. S.; Walbridge, S.; Bernardo, M.; Wong, K. J.; Johnson, D.; Lonser, R.; Oldfield, E. H.; Choyke, P. L.; Brechbiel, M. W. Contrast Media Mol. I. 2008, 3, 2.
    (64) http://physics.nist.gov/PhysRefData/XrayMassCoef/ElemTab/z78.html.
    (65) Sperling, R. A.; Rivera gil, P.; Zhang, F.; Zanella, M.; Parak, W. J. Chem. Soc. Rev. 2008, 37, 1896.
    (66) Ren, J. T.; Tilley, R. D., J. Am. Chem. Soc. 2007, 129, 3287.
    (67) Klemmer, T. J.; Shukla, N., Liu, C.; Wu, X. W.; Svedberg, E. B.; Mryasov, O.; Chantrell, R. W.; Weller, D., Appl. Phys. Lett. 2002, 81, 2220.
    (68) Klug, H. P.; Alexander, L. E. X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials; Wiley: New York, 1962.
    (69) Wang, Z. L., J. Phys. Chem. B 2000, 104, 1153.
    (70) Ahmadi, T. S.; Wang, Z. L.; Henglein, A.; ElSayed, M. A., Chem. Mater. 1996, 8, 1161.
    (71) G. Wulff, Z. Kristallogr. 1901, 34, 449.
    (72) Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Angew. Chem. Int. Ed. 2009, 48, 60.
    (73) Puzder, A.; Williamson, A. J.; Zaitseva, N.; Galli, G. Manna, L.; Alivisatos, A. P. Nano Lett., 2004, 4, 2361.
    (74) Shevchenko, E. V.; Talapin, D. V.; Schnablegger, H.; Kornowski, A.; Festin, O.; Svedlindh, P.; Haase, M.; Weller, H., J. Am. Chem. Soc. 2003, 125, 9090.
    (75) Park, J.; Lee, E.; Hwang, N. M.; Kang, M. S.; Kim, S. C.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kini, J. Y.; Park, J. H.; Hyeon, T., Angew. Chem. Int. Ed. 2005, 44, 2872.
    (76) Chikazumi, S. Physics of Ferromagnetism, Clarendon, Oxford, 1997.
    (77) Bødker, F.; Morup, S.; Linderoth, S., Phys. Rev. Lett. 1994, 72, 282.
    (78) Jamet, M.; Wernsdorfer, W.; Thirion, C.; Dupuis, V.; Melinon, P.; Perez, A.
    (79) Cheng, R.; Bader, S. D.; Fradin, F. Y., Phys. Rev. B 2008, 77, 024404-1.
    (80) Cozzoli, P. D.; Snoeck, E.; Garcia, M. A.; Giannini, C.; Guagliardi, A.; Cervellino, A.; Gozzo, F.; Hernando, A.; Achterhold, K.; Ciobanu, N.; Parak, F. G.; Cingolani, R.; Manna, L., Nano Lett. 2006, 6, 1966.
    (81) Cullity, B. D. Introduction to Magnetic Materials, Addison-Wiley, Reading, 1972.
    (82) Dong, X. L.; Zhang, Z. D.; Jin, S. R.; Kim, B. K. J Magn Magn Mater 2000, 210, 143.
    (83) Zoriasatain, S.; Azarkharman, F.; Sebt, S. A.; Akhavan, M. J Magn Magn Mater 2006, 300, 525.
    (84) Chen, J. P.; Sorensen, C. M.; Klabunde, K. J.; Hadjipanayis, G. C.; Devlin, E.; Kostikas, A. Phys. Rev. B. 1996, 54, 9288.
    (85) Park, J. H.; Lee, E.; Hwang, N. M.; Kang, M. S.; Kim, S. C.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kini, J. Y.; Park, J. H.; Hyeon, T. Angew. Chem. Int. Ed. 2005, 44, 2872.
    (86) According to the EDX results, the weight concentration of FePt nanoparticles at various Fe concentrations could be estimated. For example, the alloying component of 12nm-FePt is Fe33Pt67. As 12nm-FePt is at 100 mM Fe, the Fe weight concentration is 5.2 mg/mL and the Pt weight concentration is roughly 39.5 mg/mL. As a result, the weight concentration of 3nm-FePt at 100 mM Fe is corresponding to 19.3 mg/mL and the weight concentration of 6nm-FePt at 100 mM Fe is corresponding to 23.9 mg/mL. In other words, the CT value of 3nm-FePt (83.3 HU) exhibits an equal X-ray absorption as 40.5 mg/mL of CT contrast agent. Further, the CT value of 6nm-FePt (88.2 HU) is equal to that of CT contrast agent of 42.9 mg/mL.
    (87) Mailander, V.; Landfester, K. Biomacromolecules 2009, 10, 2379.
    (88) Martin, A. L.; Bernas, L. M.; Rutt, B. K.; Foster, P. J.; Gillies, E. R. Bioconjugate Chem. 2008, 19, 2375.

    下載圖示
    QR CODE