簡易檢索 / 詳目顯示

研究生: 蘇千華
Su, Chien-Hua
論文名稱: 以化學法製備銅奈米薄膜及其螢光增強特性分析
Fabrication copper films by wetting method and analysis of its fluorescence enhancement
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 55
中文關鍵詞: 金屬螢光增強局部表面電漿共振銅奈米顆粒
英文關鍵詞: Metal Enhanced Fluorescence, Localized Surface Plasmon Resonance, Copper nanoparticle
DOI URL: http://doi.org/10.6345/THE.NTNU.DC.023.2018.B05
論文種類: 學術論文
相關次數: 點閱:78下載:146
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬奈米粒子具有獨特的螢光增強特性,當螢光物質與金屬之間隔有一定距離時,螢光物質受到金屬奈米粒子電場影響,螢光物質會有較多的電子躍遷至激發態,之後回到基態的電子數也增多,進一步增強其放光量,此現象稱為金屬螢光增強(Metal Enhanced Fluorescence , MEF)。
    此研究是以無電鍍的方式在水溶液中製備出銅薄膜,以乙醛酸(Glyoxylic acid solution)做為還原劑,並用硫醇修飾其表面,使銅片表面不易與空氣直接接觸,且在後面步驟中TEOS可以更易修飾上,在過去的文獻中發現,銅的局部表面電漿共振 (Localized Surface Plasmon Resonance , LSPR)未受到太大的重視,因為表面有氧化的問題,因此本實驗為了改善其問題,在銅片表面修飾上二氧化矽,且利用改變銅製備時間的長短,觀察螢光強度對銅厚度的結果,將本材料與對照組相比有明顯的染劑螢光強度增強,由此方法可增加整體的螢光增強極限,當銅片的厚度在100奈米左右時,對Streptavidin-IR800有最大的螢光增強,最大值接近60倍。

    Metallic nanoparticles possess specific properties called metal enhanced fluorescence (MEF), which plays a crucial role in this study. The concept of MEF is that there will be more electrons transitioned to the excited state from the ground state when the fluorescent substance and metallic nanoparticles are in a certain distance owing to the electric field effect. In addition, there will be more electrons released back to the ground state, which can enhance the emission of the light.
    The method of preparing copper films in aqueous solution without plating was investigated in this study. Instead of plating method to generate the copper films, glyoxylic acid solution was used as the reducing agent to reduce the copper surface. After the reducing process, the copper surface was modified by (3-Mercaptopropyl)trimethoxysilane to stably remain the films in reduced state. In previous study, the localized surface plasmon resonance (LSPR) of copper was not emphasized in the research due to the problem of oxidation of the material surface. Therefore, as to improve the previous method, the surface of copper was modified by SiO2. In addition, the method in this study to control the time of preparing copper films was shown to have obviously enhancement of the fluorescence of Streptavidin-IR800 according to its results. This method was investigated to promote the overall limit of the enhancement of fluorescence. The copper films with around 100 nm thickness were reported to have the optimal fluorescence enhancement approximately 60 times compared to the previous method.

    摘要 I 目錄 III 表目錄 VII 第一章 緒論 1 1-1 奈米的發展起源 1 1-2 奈米材料特性 2 1-3 奈米材料運用 4 1-3-1 奈米與生物科技 4 1-3-2 奈米與醫學 5 1-3-3 奈米金屬 6 1-4 研究目的 7 第二章 文獻回顧 8 2-1 金屬增強螢光(Metal Enhanced Fluorescence , MEF) 8 2-2 SPR和LSPR的介紹 10 2-2-1 表面電漿共振(Surface Plasmon Resonance , SPR) 10 2-2-2 局部表面電漿共振(Localized Surface Plasmon Resonance , LSPR) 11 2-2-3 SPR和LSPR的區別 12 2-3 緩衝溶液(Buffer Solution) 13 第三章 實驗藥品及步驟 15 3-1 實驗藥品 15 3-2 實驗儀器介紹 18 3-2-1 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 18 3-2-2 穿透式電子顯微鏡(Transmission Electron Microscopy,TEM) 20 3-2-3 紫外-可見分光儀(Ultraviolet-Visible Spectroscopy,UV-Vis) 21 3-2-4 酸鹼度測定儀(pH meter) 21 3-2-5 MidaScan 22 3-2-6 孔盤成長室(FAST slide incubation chambers) 24 3-2-7 X射線光電子能譜儀(X-ray Photoelectron Spectroscopy,XPS) 24 3-2-8 迴轉式震盪恆溫水槽(Orbital Shaking Baths) 25 3-2-9 能量散射X射線光譜(Energy-Dispersive X-ray Spectroscopy,EDS) 25 3-3 實驗步驟 26 3-3-1 玻片清洗 & 玻片修飾Succinic anhydride 26 3-3-2 一次長晶法 製備金的晶種(seed) 26 3-3-3 二次長晶法 將銅長在玻片上,形成Cu/Au nano film 28 3-3-4 奈米銅薄膜表面修飾 29 3-3-5 奈米銅薄膜修飾上螢光分子 30 第四章 研究過程與結果討論 31 4-1 無電鍍銅-還原劑選擇 31 4-2 Buffer Solution 選擇 32 4-3 實驗過程SEM及TEM圖 34 4-3-1 Au seed top view 34 4-3-2 Au 75 µM nanoparticle top view 35 4-3-3 還原劑選擇 36 4-3-4 乙醛酸成長過程 41 4-3-5 Glyoxylic Acid Modified by SiO2 43 4-4 還原劑與螢光強度的關係 44 4-5 Streptavidin-IR800反應時間與螢光強度的關係 45 4-6 UV圖 46 4-6-1 Glyoxylic acid 46 4-6-2 Glyoxal 46 4-7 XPS圖譜 47 4-7-1 S-的XPS 47 4-7-2 Cu-的XPS 48 4-8 EDS 49 4-9 螢光增強測試 51 第五章 結論與未來展望 52 第六章 參考文獻 53

    1. 牟中原、陳家俊,科學發展 2000,28 (4),281-288。
    2. 張立德,奈米材料 2002。
    3. 曹茂盛、關長斌、徐甲強,奈米材料導論 2002。
    4. Wang, Y.; Herron, N. The Journal of Physical Chemistry, 1991, 95, 525-532.
    5. Berends, A.; Donega, C. The Journal of Physical Chemistry Letters, 2017, 8, 4077-4090.
    6. Mirzaei, J.; Reznikov, M.; Hegmann, T. Journal of Materials Chemical, 2012, 22, 22350-22365.
    7. 周家慶,以超順磁粒子純化溶菌酶,2008。
    8. Thevenot, J. Chemical Society Reviews, 2013, 42, 7099-7116.
    9. Cao, Y.; Jin, R. Mirkin, C. Journal of the American Chemical Society, 2001, 123, 7961-7962.
    10. Aslan, K. Journal of the American Chemical Society, 2007, 129, 1524-1525.
    11. Wang, Y.; Asefa, T. Langmuir, 2010, 26, 7469-7474.
    12. Zhang, K. Nanotechnology, 2007, 18, 275607.
    13. Sugawa, K. ACS nano, 2013, 7, 9997-10010.
    14. Sugawa, k. ACS applied materials & interfaces, 2017, 9, 750-762.
    15. Sokolov, K.; Chumanov, G.; Cotton, T. Analyical Chemistry, 1998, 70, 3898-3905.
    16. Hayakawa, K.;Selvan, S.; Nogami, M. Applied Physics Letters, 1999, 74, 1513-1515.
    17. Selvan, S.; Hayakawa, T.; Nogami, M. The Journal of Physical Chemistry B, 1999, 74, 1513-1515.
    18. Lakowicz, J. Analytical biochemistry, 2001, 298, 1-24.
    19. Gryczynski, I. Journal of Fluorescence, 2002, 12, 11-13.
    20. Geddes, C.;Lakowicz, J. Journal of Fluorescence, 2002, 12, 121-129.
    21. Jahn, M. Analyst, 2016, 141, 756-793.
    22. Wang, J.; Lin, W. Sensors, 2017, 17, 2719.
    23. Haynes, C.; Duyne, R. ACS Publications, 2001, 105, 5599-5611.
    24. Sherry, L.; Chang, S. Nano letters, 2006, 6 (9), 2060-2065.
    25. Sherry, L.; Chang, S. Nano letters, 2005, 5 (10), 2034-2038.
    26. Huang, W.; Qian, W. Nano Letters, 2004, 4 (9), 1741-1747.
    27. Hammond, J.; Bhalla, N. Biosensors, 2014, 4(2), 172-188.
    28. Kim, J.; Ehrman, S. Applied physics letters, 2004, 84 (8), 1278-1280.
    29. Chavez, K.;Hess, D. Journal of The Electrochemical Society, 2001, 148 (11),640-643.
    30. Kim, D.; Yoo, S. Analytical chemistry, 2011, 83 (16), 6215-6222.
    31. Qin, L.; Ling, C. Chemical Communications, 2012, 48 (10), 1511-1513.
    32. Chan, G.; Zhao, J. Nano Letters, 2007, 7 (7), 1947-1952.
    33. Jafarzadeh, M.; Soleimani, E. Journal of Fluorine Chemistry, 2015, 178, 219-224.
    34. Sun, J.; Yu, G. Catalysis Science & Technology, 2014, 4, 1246-1252.
    35. Hind, G.; Nakatani, H. Proceedings of the National Academy of Sciences, 1974, 71 (4), 1484-1488.
    36. Jatschka, J.; Dathe, A. Sensing and bio-sensing research, 2016, 7, 62-70.
    37. Ferreira, C.; Pinto, L. Rsc Advances, 2015, 5 (39), 30989-31003.
    38. Goldstein, J. Springer, 2017.
    39. Ye, X.; Zheng, C. Nano letters, 2013, 13 (2), 765-771.
    40. Huang, X.;Neretina, S. Advanced Materials, 2009, 21 (48), 4880-4910.
    41. Lakowicz, J.;Ray, K. Analyst, 2008, 133 (10), 1308-1346.
    42. Tsai, Y.; Chen, Y. Small, 2013, 9 (12), 2119-2128.
    43. Lin, F.; Shao, Z. Royal Society of Chemistry, 2017, 7, 15053-15059.

    下載圖示
    QR CODE