簡易檢索 / 詳目顯示

研究生: 鄭弘昇
Zheng, Hong-Sheng
論文名稱: 以第一原理計算探討非均相催化反應:乙醇氧化反應及乙醇氧化蒸氣重組反應
First-Principles Calculations of Heterogeneous Catalytic Reaction: Ethanol Oxidation Reaction and Oxidative Steam-Reforming Reaction
指導教授: 王禎翰
Wang, Jeng-Han
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 88
中文關鍵詞: 密度泛函理論計算乙醇氧化反應乙醇氧化蒸氣重組反應催化劑PtSnM催化劑Rh
英文關鍵詞: Density Functional Theory, ethanol oxidation reaction, ethanol oxidative steam-reforming reaction, catalyst PtSnM, catalyst Rh
DOI URL: http://doi.org/10.6345/NTNU201900085
論文種類: 學術論文
相關次數: 點閱:51下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文運用密度泛函理論(DFT)計算來探討乙醇非均相催化反應,其中包括燃料電池中於陽極反應的乙醇氧化反應(Ethanol Oxidation Reaction, EOR),以及應用於產生氫氣的乙醇氧化蒸汽重整反應(Oxidative Steam -Reforming Reaction of Ethanol, OSRE)。
    在EOR的研究中,我們模擬了三元金屬PtSnM催化劑(M = Ag,Co,Cu,Pd,Rh)來進行計算。計算結果發現,EOR的活性可以透過金屬M與表面上的含氧物質(OCS)來增強,並來幫助乙醇進行脫氫反應。此外,具有較高親氧性的金屬M利用電荷分佈的分析可以發現更容易有效的抓取H。因此,於PtSnM催化劑中PtSnAg表現出最佳的EOR活性。
    在OSRE的研究中,我們研究了Rh(111)表面上的催化反應,以及吸附了O *和OH *的催化反應,以研究氧氣和水兩種關鍵試劑的影響。計算結果表明,氧氣環境下O *可有效地將乙醇脫氫為乙氧基,以提高OSRE的催化效率。此外,氧氣環境下的O *可以有效降低C-Hα解離能障形成吸附乙醛,改變其反應途徑及副產物選擇性,且在水環境下的OH *顯示出與氧氣環境下的O *具有一致的反應結果。

    Our present study employed Density Functional Theory(DFT)calculation to examine ethanol related heterogeneous catalyst, including ethanol oxidation reaction(EOR), the anodic reaction in fuel cell apply and oxidation steam reforming reaction(OSR), in the application for hydrogen production.
    In the study of EOR, we model the ternary PtSnM catalyst(M=Ag, Co, Cu, Pd, Rh). The computation result found that EOR activity can be enhanced by oxygen containing species(OCS)on surface the additive M , to extract H in the oxidative dehydrogenation step. Also, the additive M with higher oxophilicity can grab the H easier according to the charge distribution. Thus, PtSnAg demonstrates the best EOR activity dene to the lowest oxophilicity of Ag.
    In the study of OSRE, we examine the catalytic reaction on Rh(111)surface, as well as that covered with adsorbed O* and OH* to investigate the effects from oxygen and water the two key reagents. The computation result found that surface O* can effective dehydrogenate ethanol to ethoxy to enhance the catalytic efficiency of OSRE. Also, surface O* can better reduce the activation barrier for C-Hα dissociation forming adsorbed acetaldehyde. Thus, alter the reaction route and side product selectivity. Surface OH* shows similar catalytic behavior with moderate efficiency.

    第一章 緒論 1 1-1 前言 1 1-2 質子交換膜燃料電池(Proton Exchange Membrane Fuel Cell) 2 1-3 直接乙醇燃料電池(Direct Ethanol Fuel Cell) 4 1-4 乙醇氧化反應(Ethanol Oxidation Reaction) 5 1-5 乙醇氧化蒸氣重組反應(Oxidative Steam -Reforming Reaction of Ethanol) 7 1-6 研究動機 9 第二章 理論計算原理 10 2-1 密度泛函理論(Density Functional Theory) 10 2-1-1 Born-Oppenheimer Approximation 10 2-1-2 Kohn-Sham Equation 11 2-1-3 交換關聯函數(Exchange-Correlation Function) 12 2-1-4 布洛赫定理與平面波基底(Bloch’s Theorem and Plane-Wave Basis Sets) 13 2-1-5 虛位勢(Pseudopotential) 14 2-2 系統與軟體 15 2-2-1 國家高速網路與計算中心(NCHC) 15 2-2-2 操作軟體 VASP(Vienna Ab-initio Simulation Package) 15 2-3 計算相關參數設定及表面model之建立 15 2-3-1 計算參數設定 15 2-3-2 表面模型 16 2-3-3 計算流程 17 2-4 檔案參數介紹 18 第三章 結果與討論 24 3-1 EOR在不同PtSnM合金表面之計算 24 3-1-1 Pt(111)表面加入Sn與金屬M模型之建立 24 3-1-2 比較EOR於PtSnM表面之吸附能力 27 3-1-3 EOR於PtSnM表面之反應途徑 35 3-1-4 金屬上O及OH對EOR反應途徑之影響 50 3-1-5 PtSnM合金表面之鍵結分析 52 3-1-6 EOR於PtSnM與PtSn表面之比較 55 3-1-7 乙醇氧化反應之實驗結果 59 3-2 OSRE在Rh(111)表面之計算 60 3-2-1 OSRE於Rh(111)表面之反應途徑 60 3-2-2 吸附物於Rh(111)表面之結構與反應 62 3-2-3 OSRE於Rh(111)表面之電荷分析 77 3-2-4 實驗產物及反應途徑 80 第四章 結論 83 第五章 參考資料 84

    1. Liu, C.-Y.; Sung, C.-C. A review of the performance and analysis of proton exchange membrane fuel cell membrane electrode assemblies. Journal of Power Sources 2012, 220, 348-353.
    2. Sharma, S.; Pollet, B.-G. Support materials for PEMFC and DMFC electrocatalysts—A review. Journal of Power Sources 2012, 208, 96–119.
    3. Yan, L.; Hu, Y.; Zhang, X.; Yue, B. Applications of NMR Techniques in the Development and Operation of Proton Exchange Membrane Fuel Cells. Annual Reports on NMR Spectroscopy. 2016, 88, 149-213.
    4. Badwal, S. P. S.; Giddey, S.; Kulkarni, A.; Goel, J.; Basu, S. Direct ethanol fuel cells for transport and stationary applications – A comprehensive review. Applied Energy. 2015, 145, 80–103.
    5. Jeong, J.-G.; Yun, Y.-H. Direct Ethanol Fuel Cell (DEFC) Fabricated with Ceramic Membrane. Transactions of the Korean hydrogen and new energy society. 2014, 25, 419-424.
    6. Wang, Y.; Zou, S.; Cai, W.-B. Recent Advances on Electro-Oxidation of Ethanol on Pt- and Pd-Based Catalysts: From Reaction Mechanisms to Catalytic Materials. Catalysts. 2015, 5, 1507-1534.
    7. Zhiani, M.; Majidi, S.; Rostami, H.; Taghiabadi, M. M. Comparative study of aliphatic alcohols electrooxidation on zero-valent palladium complex for direct alcohol fuel cells. International Journal of Hydrogen Energy. 2015, 40, 568-576.
    8. Liang, Z. X.; Zhao, T. S.; Xu, J.B.; Zhu, L. D. Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochimica Acta. 2009, 54, 2203-2208.
    9. Busó‐Rogero, C.; Herrero, E.; Feliu, J. M. Ethanol Oxidation on Pt Single‐Crystal Electrodes: Surface‐Structure Effects in Alkaline Medium. Chem Phys Chem. 2014, 15, 2019-2028.
    10. Zhou, W.; Li, M.; Zhang, L.; Chan, S.-H. Supported PtAu catalysts with different nano-structures for ethanol electrooxidation. Electrochimica Acta. 2014, 123, 223-239
    11. Vigier, F.; Rousseau, S.; Coutanceau, C.; Leger, J.-M.; Lamy, C. Electrocatalysis for the direct alcohol fuel cell. Topics in Catalysis. 2006, 40, 111-121.
    12. Rabis, A.; Rodriguez, P.; Schmidt, T. J. Electrocatalysis for Polymer Electrolyte Fuel Cells: Recent Achievements and Future Challenges. Acs Catalysis. 2012, 2, 864 – 890.
    13. An, L.; Zhao, T. S.; Li, Y. S. Carbon-neutral sustainable energy technology: Direct ethanol fuel cells. Renewable and Sustainable Energy Reviews. 2015, 50 , 1462-1468.
    14. Iwasita, T.; Pastor, E. A dems and FTir spectroscopic investigation of adsorbed ethanol on polycrystalline platinum. Electrochimica Acta. 1994, 39, 531-537.
    15. Lai, S. C. S.; Koper, M. T. M. Electro-oxidation of ethanol and acetaldehyde on platinum single-crystal electrodes. The Royal Society of Chemistry, 2008, 140, 399-416.
    16. Koper, M. T. M.; Lai, S. C. S.; Herrero, E. Mechanisms of the Oxidation of Carbon Monoxide and Small Organic Molecules at Metal Electrodes. Fuel cell catalysis. 2009, 159-207
    17. Holton, O. T.; Stevenson, J. W. The Role of Platinum in Proton Exchange Membrane Fuel Cells. Platinum Metals Review. 2013, 57, 259-271.
    18. Zhang, J.; Sasaki, K.; Sutter, E.; Adzi, R. R. Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters. Science. 2007, 315, 220-222.
    19. Meenakshi, S.; Sridhar, P.; Pitchumani, S. Carbon supported Pt–Sn/SnO2 anode catalyst for direct ethanol fuel cells. RSC Advances. 2014, 4 , 44386–44393.
    20. Ma,Y.; Wang, H.; Ji, S.; Linkov, V.; Wang, R. PtSn/C catalysts for ethanol oxidation: The effect of stabilizers on the morphology and particle distribution. Journal of Power Sources. 2014, 247, 142-150.
    21. Iwasita, T. Electrocatalysis of methanol oxidation. Electrochimica Acta. 2002, 47, 3663-3674.
    22. Corradini, P. G.; Perez, J. Activity, mechanism, and short-term stability evaluation of PtSn-rare earth/C electrocatalysts for the ethanol oxidation reaction. Journal of Solid State Electrochemistry. 2018, 22, 1525-1537.
    23. Antolini, E.; Gonzalez, E. R. A simple model to assess the contribution of alloyed and non-alloyed platinum and tin to the ethanol oxidation reaction on Pt–Sn/C catalysts: Application to direct ethanol fuel cell performance. Electrochimica Acta. 2010, 55, 6485-6490.
    24. Calvillo, L.; Leo, L. M. D.; Thompson. S. J.; Price, S. W. T.; Calvo, E. J.; Russell, A. E. In situ determination of the nanostructure effects on the activity, stability and selectivity of Pt-Sn ethanol oxidation catalysts. Journal of Electroanalytical Chemistry. 2018, 819, 136-144.
    25. Nakamura, M.; Imai, R.; Otsuka, N.; Hoshi, N.; Sakata, O. Ethanol Oxidation on Well-Ordered PtSn Surface Alloy on Pt(111) Electrode. J. Phys. Chem. C 2013, 117, 18139−18143.
    26. Navarro, R. M.; Pena, M. A.; Fierro, J. L. G. Hydrogen Production Reactions from Carbon Feedstocks:  Fossil Fuels and Biomass. Chem. Rev. 2007, 107, 3952-3991.
    27. Piscina, P. R. D. A.; Homs, N. Use of biofuels to produce hydrogen (reformation processes) Chem. Soc. Rev., 2008, 37, 2459-2467.
    28. Ni, M.; Leung, D. Y. C.; Leung, M. K. H. A review on reforming bio-ethanol for hydrogen production. International Journal of Hydrogen Energy. 2007, 32, 3238-3247.
    29. Erdöhelyi, A.; Rasko´, J.; Kecske´s, T.; To´th, M.; Dömök, M.; Baán, K. Hydrogen formation in ethanol reforming on supported noble metal catalysts. Catalysis Today. 2006, 116, 367-376.
    30. Chen, H.; Yu, H.; Tang, Y.; Pan, M.; Yang, G.; Peng, F.; Wang, H.; Yang, J. Hydrogen production via autothermal reforming of ethanol over noble metal catalysts supported on oxides. Journal of Natural Gas Chemistry. 2009, 18, 191-198.
    31. Wanat, E. C.; Venkataraman, K.; Schmidt, L. D. Steam reforming and water–gas shift of ethanol on Rh and Rh–Ce catalysts in a catalytic wall reactor. Applied Catalysis A: General. 2004, 276, 155-162.
    32. Sheng, P.-Y.; Yee, A.; Bowmaker, G. A.; Idriss1, H. H2 Production from Ethanol over Rh–Pt/CeO2 Catalysts: The Role of Rh for the Efficient Dissociation of the Carbon–Carbon Bond. Journal of Catalysis. 2002, 208, 393-403.
    33. Kugai, J.; Velu, S.; Song, C. Low-temperature reforming of ethanol over CeO2-supported Ni-Rh bimetallic catalysts for hydrogen production. Catalysis Letters. 2005, 101, 255-264.
    34. Syu, C.-Y.; Wang, J.-H. Mechanistic Study of the Oxidative Steam Reforming of EtOH on Rh(111): The Importance of the Oxygen Effect. ChemCatChem 2013, 5, 3164 – 3174.
    35. Zhang, J.; Zhong, Z.; Cao, X.-M.; Hu, P.; Sullivan, M. B.; Chen, L. Ethanol Steam Reforming on Rh Catalysts: Theoretical and Experimental Understanding. ACS Catal. 2014, 4, 448 – 456.
    36. Wang, W.; Zhu, C.; Cao, Y. DFT study on pathways of steam reforming of ethanol under cold plasma conditions for hydrogen generation. International Journal of Hydrogen Energy. 2010, 35, 1951-1956.
    37. Cavallaro, S.; Chiodo, V.; Vita, A.; Freni, S. Hydrogen production by auto-thermal reforming of ethanol on Rh/Al2O3 catalyst. Journal of Power Sources. 2003, 123, 10-16.
    38. Choi, Y.; Liu, P. Understanding of ethanol decomposition on Rh(111) from density functional theory and kinetic Monte Carlo simulations. Catalysis Today. 2011, 165, 64-70.
    39. Wang, J.-H.; Lee, C. S.; Lin, M. C. Mechanism of Ethanol Reforming: Theoretical Foundations. J. Phys. Chem. C 2009, 113, 6681–6688.
    40. Li, L.; Liu, H.; Qin, C.; Liang, Z.; Scida, A.; Yue, S.; Tong, X.; Adzic, R. R.; Wong, S. S. Ultrathin PtxSn1–x Nanowires for Methanol and Ethanol Oxidation Reactions: Tuning Performance by Varying Chemical Composition. ACS Appl. Nano Mater. 2018, 1, 1104-1115.
    41. Chen, Y.; Wang, J.; Meng, X.; Zhong, Y.; Li, R.; Sun, X.; Ye, S.; Knights, S. Atomic layer deposition assisted Pt-SnO2 hybrid catalysts on nitrogen-doped CNTs with enhanced electrocatalytic activities for low temperature fuel cells. International Journal of Hydrogen Energy. 2011, 36, 11085-11092.
    42. Chen, S. Y.; Shi, L.; Wang, L. Mesoporous PtSnO2/C Catalyst with Enhanced Catalytic Activity for Ethanol Electro-oxidation. Original scientific paper. 2018, 67, 29-27.
    43. Peela, N. R.; Kunzru, D. Oxidative steam reforming of ethanol over Rh based catalysts in a micro-channel reactor. International Journal of Hydrogen Energy. 2011, 36, 3384-3396.
    44. Graschinsky, C.; Contreras, J. L.; Amadeo, N.; Laborde. M. Ethanol Oxidative Steam Reforming over Rh(1%)/MgAl2O4/Al2O3 Catalyst. Ind. Eng. Chem. Res. 2014, 53, 15348-15356.
    45. Xu, Z.-F.; Wang, Y. Effects of Alloyed Metal on the Catalysis Activity of Pt for Ethanol Partial Oxidation: Adsorption and Dehydrogenation on Pt3M (M = Pt, Ru, Sn, Re, Rh, and Pd). J. Phys. Chem. C 2011, 115, 20565-20571.
    46. Jablonski, A.; Lewera, A. Electrocatalytic oxidation of ethanol on Pt, Pt-Ru and Pt-Sn nanoparticles in polymer electrolyte membrane fuel cell—Role of oxygen permeation. Applied Catalysis B: Environmental. 2012, 115-116, 25-30.
    47. Jiang, L.; Sun, G.; Sun, S.; Liu, J.; Tang, S.; Li, H.; Zhou, B.; Xin, Q. Structure and chemical composition of supported Pt–Sn electrocatalysts for ethanol oxidation. Electrochimica Acta. 2005, 50, 5384-5389.
    48. Hable, C. T.; Wrighton, M. S. Electrocatalytic Oxidation of Methanol and Ethanol: A Comparison of Platinum-Tin and Platinum-Ruthenium Catalyst Particles in a Conducting Polyaniline Matrix. Langmuir. 1993, 9, 3284-3290.
    49. Thepkaew, J.; Therdthianwong, S.; Kucernak, A.; Therdthianwong, A. Electrocatalytic activity of mesoporous binary/ternary PtSn-based catalysts for ethanol oxidation. Journal of Electroanalytical Chemistry. 2012, 685, 41-46.
    50. Liu, Y.; Wei, M.; Raciti, D.; Wang, Y.; Hu, P.; Park, J. H.; Barclay, M.; Wang, C. Electro-Oxidation of Ethanol Using Pt3Sn Alloy Nanoparticles. ACS Catal. 2018, 8, 10931−10937.
    51. Kowal, A.; Li, M.; Shao, M.; Sasaki, K.; Vukmirovic M. B.; Zhang, J.; Marinkovic, N. S.; Liu, P.; Frenkel, A. I.; Adzic, R. R. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. NATURE MATERIALS. 2009, 8, 325-330.
    52. Li, M.; Cullen, D. A.; Sasaki, K.; Marinkovic, N. S.; More, K.; Adzic, R. R. Ternary Electrocatalysts for Oxidizing Ethanol to Carbon Dioxide: Making Ir Capable of Splitting C–C Bond. J. Am. Chem. Soc. 2013, 135, 132−141.
    53. Antolini, E.; Colmati, F.; Gonzalez, E. R. Effect of Ru addition on the structural characteristics and the electrochemical activity for ethanol oxidation of carbon supported Pt–Sn alloy catalysts. Electrochemistry Communications. 2007, 9, 398-404.
    54. Neto, A. O.; Dias, R. R.; Tusi, M. M.; Linardi, M.; Spinac´e, E. V. Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process. Journal of Power Sources. 2007, 166, 87-91.
    55. Almeida, T. S.; Kokoh, K. B.; De Andrade, A. R. Effect of Ni on Pt/C and PtSn/C prepared by the Pechini method. International Journal of Hydrogen Energy. 2011, 36, 3803-3810.
    56. Purgato, F. L. S.; Pronier, S.; Olivi, P.; De Andrade, A. R.; Léger, J. M.; Tremiliosi-Filho, G.; Kokoh, K. B. Direct ethanol fuel cell: Electrochemical performance at 90 °C on Pt and PtSn/C electrocatalysts. Journal of Power Sources. 2012, 198, 95-99.
    57. Ciapina, E. G.; Gonzalez, E. R. Investigation of the electro-oxidation of CO on Pt-based carbon supported catalysts (Pt75Sn25/C, Pt65Ru35/C and Pt/C) by electrochemical impedance spectroscopy. Journal of Electroanalytical Chemistry. 2009, 626, 130-142.
    58. Li, H.; Sun, G.; Cao, L.; Jiang, L.; Xin, Q. Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation. Electrochimica Acta. 2007, 52, 6622-6629.
    59. Igarashi, H.; Fujino, T.; Zhu, Y.; Uchida, H.; Watanabe, M. CO Tolerance of Pt alloy electrocatalysts for polymer electrolyte fuel cells and the detoxification mechanism. Phys. Chem. Chem. Phys. 2001, 3, 306-314.
    60. Park, K.-W.; Choi, J.-H.; Kwon, B.-K.; Lee, S.-A.; Sung, T.-E.; Ha, H.-Y.; Hong, S.-A.; Kim, H.; Wieckowski, A. Chemical and Electronic Effects of Ni in Pt/Ni and Pt/Ru/Ni Alloy Nanoparticles in Methanol Electrooxidation. J. Phys. Chem. B. 2002, 106, 1869-1877.
    61. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathodest. J. Phys. Chem. B 2004, 108, 17886 – 17892.

    無法下載圖示 電子全文延後公開
    2024/12/31
    QR CODE