簡易檢索 / 詳目顯示

研究生: 翁于晴
Weng, Yu-Ching
論文名稱: 探討海洋深層水對痤瘡丙酸桿菌誘發ICR小鼠耳朵皮膚發炎之改善效果
Effects of deep sea water on Cutibacterium acnes-induced skin inflammation in ICR mice ears
指導教授: 鄭劍廷
Chien, Chiang-Ting
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 45
中文關鍵詞: 痤瘡丙酸桿菌海洋深層水發炎ICR小鼠p38NF-kB
英文關鍵詞: Cutibacterium acnes, deep sea water, inflammation, ICR mice, p38, NF-kB
DOI URL: http://doi.org/10.6345/NTNU201900887
論文種類: 學術論文
相關次數: 點閱:162下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 痤瘡丙酸桿菌 (Cutibacterium acnes, P. acnes) 是一種兼性厭氧的革蘭氏陽性菌,常見於人體皮膚的皮脂腺上,然而當痤瘡丙酸桿菌不正常增生的情況下與致痤瘡的形成有關,是因為痤瘡丙酸桿菌在痤瘡的形成中,扮演促進發炎的重要角色。海洋深層水 (Deep sea water, DSW) 含有豐富礦物質與活性成分,有文獻指出海洋深層水可以預防或治療過敏性濕疹,然而目前對於海洋深層水治療痤瘡丙酸桿菌所引起的痤瘡效果未有深入的研究。因此本研究探討海洋深層水對痤瘡丙酸桿菌誘導小鼠耳朵發炎情形是否有改善進行探討。首先在體外試驗中以紙錠擴散法 (disk diffusion method) 測定海洋深層水對痤瘡丙酸桿菌的抗菌活性,加入海洋深層水的載體與加入二次水的載體凝膠進行對照,可得知海洋深層水凝膠的紙錠周圍所生長的菌落數比二次水凝膠的紙錠周圍菌落數較少,因此在體外試驗具有抑菌的效果。動物實驗部分以ICR小鼠做為實驗對象,小鼠在經過一週飼養後,將痤瘡丙酸桿菌 6*109 CFU/uL 注射於小鼠耳朵皮下組織,誘導組織形成發炎現象,接著連續5天給予塗抹海洋深層水凝膠於耳朵誘發處,透過雷射都普勒血流儀觀察,予海洋深層水凝膠的組別耳朵降低紅腫的情況明顯好於其他組,且耳朵的腫脹程度也有明顯的下降。此外在H&E染色下,可以觀察到經過海洋深層水治療後可以減少皮下組織的發炎細胞浸潤的現象。我們再以西方墨點法觀察痤瘡丙酸桿菌對組織造成發炎反應之路徑,其主要是藉由活化p38及NF-kB磷酸化蛋白,進而產生發炎現象,但在給予海洋深層水後可抑制磷酸化蛋白的表現。另外在海洋深層水抑制促發炎因子的部分,包括granulocyte- macrophage colony-stimulating factor (GM-CSF)、Chemokine (C-C motif) ligand 5 (CCL5)、Chemokine (C-X-C motif) ligand 1(CXCL1)、interleukin-1b (IL-1b)、Chemokine (C-X-C motif) ligand 11 (CXCL11) 等促發炎因子之蛋白表現量有減少的趨勢。總結來說我們的結果表示經由海洋深層水治療後,能抑制MAPK 中的p38和NF-kB蛋白的磷酸化,並減少促發炎因子GM-CSF、 CXCL1、CCL5、CXCL11、IL-1b的產生,來達到降低P. acnes誘導組織發炎反應的情形,改善痤瘡丙酸桿菌引起的皮膚炎症之效果。因此海洋深層水能有效治療P. acnes誘導的發炎情形,以後可以作為痤瘡桿菌的治療選擇之一。

    Cutibacterium acnes (Propionibacterium acnes, P. acnes) is a Gram-positive anaerobic bacterium exist in sebaceous follicle-rich areas of human skin. The overgrowth of P. acnes has been associated with the progression of acne. It plays an important role in the pathogenesis of acne by inducing certain inflammatory mediators. Deep sea water (DSW) is rich in minerals and active ingredients. DSW has displayed an effective potential in anti-atopic dermatitis activity in previous studies. Until now, the anti-P. acnes. activity against has not been clearly reported. This study investigated the effect and mechanism of DSW on anti-P. acnes induced inflammation. In this study, the DSW gel showed a good anti-microbial activity than the water gel in disk diffusion method. It means DSW gel had less microbiological colony count than water gel. Moreover the ICR mice were tested in this experiment. After 1 week of adaptation, we injected P. acnes (6*109 CFU/uL) into the ears induce inflammatory response. We applied the ears with DSW gel for 5 days after inflammation, followed by sacrifice and collected the tissue for subsequent experimental analysis. Our data showed that P. acnes enhanced blood flow in the mice ears. Treatment of DSW gel reduced inflammatory ears blood flow. In H&E stain, DSW gel also reduced ear inflammatory cell infiltration induced inflammation. We used western blot to further determine which pathway responsible for P. acnes induced inflammation. The data showed that P. acnes increased the expressions of phosphorylated nuclear factor-kB (NF-kB) and p38 in P. acnes- treated ears. DSW gel- treated ears displayed a downregulation of phosphorylated nuclear factor-B (NF-B) and p38 protein. DSW also exhibited an anti-inflammatory role by inhibiting the expression of pro-inflammatory cytokines, including granulocyte- macrophage colony-stimulating factor (GM-CSF), Chemokine (C-C motif) ligand 5 (CCL5), Chemokine (C-X-C motif) ligand 1 (CXCL1), interleukin-1b (IL-1b), Chemokine (C-X-C motif) ligand 11 (CXCL11). In summary, our results showed that DSW gel could suppress the inflammation through inhibition of p38/NF-kB pathway and reduced pro-inflammatory cytokines including GM-CSF, CXCL1, CCL5, CXCL11 and IL-1b expression. DSW gel showed a good effect on anti-P. acnes induced inflammatuib in the ears. DSW gel can provide a therapeutic potential on treating dermatitis.

    中文摘要 i Abstracts iii 縮寫表 v 目錄 vii 第一章 緒論 1 1.1 痤瘡丙酸桿菌的形成 1 1.2 痤瘡丙酸桿菌的治療方式 2 1.3 海洋深層水用於改善痤瘡丙酸桿菌的發炎情形 3 1.4 研究的動機與目的 4 第二章 研究材料與方法 5 2.1 實驗動物 5 2.2 動物分組 5 2.3 痤瘡桿菌的製備 6 2.4 體外抑菌實驗 6 2.5 痤瘡丙酸桿菌動物模式的誘發 7 2.6 動物處理 7 2.7 耳朵厚度與重量分析 8 2.8 病理組織切片化學免疫染色 8 2.9 西方墨點法(Western Blot) 10 2.10 細胞激素蛋白表達微陣列(Cytokine Array) 11 2.11 統計分析 11 第三章 實驗結果 13 3.1 海洋深層水有效成分分析 13 3.2 海洋深層水對於P. acnes的體外抑菌作用 13 3.3 塗抹海洋深層水後耳朵皮膚外觀改變 14 3.4 塗抹海洋深層水後耳朵皮膚表面血液循環改變 14 3.5 塗抹海洋深層水後耳朵皮膚厚度與重量改變 15 3.6 塗抹海洋深層水後耳朵皮膚病理狀態改變 16 3.7 塗抹海洋深層水後對於P. acnes誘導MAPK pathway和NFB磷酸化之影響 17 3.8 塗抹海洋深層水後對於P. acnes誘導耳朵皮膚細胞激素蛋白表現量之分析 18 3.9 塗抹海洋深層水後對於P. acnes 誘導耳朵皮膚發炎因子之影響 19 第四章 討論 20 第五章 結論 24 第六章 參考文獻 25 第七章 圖與表格 30 圖1. 實驗組別設計 30 圖2. 海洋深層水有效成分分析 31 圖3. 海洋深層水對於P. acnes的體外抑菌作用 32 圖4. 海洋深層水對於P. acnes誘導小鼠耳朵皮膚發炎之外觀改善情 33 圖5. 海洋深層水對於P. acnes誘導小鼠耳朵皮膚發炎之表面血流微循環 34 圖6. 海洋深層水對於P. acnes誘導小鼠耳朵皮膚腫脹與重量變化 35 圖7. 小鼠耳朵皮膚結構圖 37 圖8. 海洋深層水對於P. acnes誘導之白血球浸潤效果 38 圖9. 海洋深層水對於P. acnes誘導ERK蛋白質磷酸化表現量之影響 39 圖10. 海洋深層水對於P. acnes誘導JNK蛋白質磷酸化表現量之影響 40 圖11. 海洋深層水對於P. acnes誘導p38蛋白質磷酸化表現量之影響 41 圖12. 海洋深層水對於P. acnes誘導NFB p65蛋白質磷酸化表現量之影響 42 圖13. 海洋深層水對於P. acnes誘導發炎因子之細胞激素蛋白表達微陣列分析 43 圖14. 洋深層水對於P. acnes誘導小鼠耳朵皮膚CXCL11之表現量 45

    1.Goulden V, Clark SM, Cunliffe WJ. Post-adolescent acne:a review of clinical features. Br J Dermatol, 1997. 136(1), 66-70.
    2.Williams HC, Dellavalle RP, Garner S. Acne vulgaris. Lancet, 2012. 379, 361-372.
    3.Jugeau S, et al. Induction of toll-like receptors by Propionibacterium acnes. Br J Dermatol, 2005. 153(6), 1105-13.
    4.Dreno B, Thiboutot D, Gollnick H, Bettoli V, Kang S, Leyden JJ, et al. Antibiotic stewardship in dermatology: limiting antibiotic use in acne. European journal of dermatology: EJD, 2014. 24(3), 330-4.
    5.Espersen F. Resistance to antibiotics used in dermatological practice. Br J Dermatol, 1998. 139, 4-8.
    6.B.G. Ha, E.J. Shin, J.E. Park, Y.H. Shon, Anti-diabetic effect of balanced deep-sea water and its mode of action in high-fat diet induced diabetic mice, Mar. Drugs 11, 2013. 4193-4212.
    7.K.S. Lee, S.Y. Chun, Y.S. Kwon, S. Kim, K.S. Nam, Deep sea water improves hypercholesterolemia and hepatic lipid accumulation through the regulation of hepatic lipid metabolic gene expression, Mol. Med. Rep. 15, 2017. 2814-2822.
    8.K.S. Lee, D.H. Lee, Y.S. Kwon, S.Y. Chun, K.S. Nam, Deep-sea water inhibits metastatic potential in HT-29 human colorectal adenocarcinomas via MAPK/NF-kB signaling pathway, Biotechnol. Bioprocess Eng. 19, 2014. 733-739.
    9.H.S. Hwang, S.H. Kim, Y.G. Yoo, Y.S. Chu, Y.H. Shon, K.S. Nam, J.W. Yun, Inhibitory effect of deep-sea water on differentiation of 3T3-L1 adipocytes, Mar. Biotechnol. (N.Y.) 11, 2009. 161-168.
    10.K.S. Lee, S.Y. Chun, M.G. Lee, S. Kim, T.J. Jang, K.S. Nam. The prevention of TNF-alpha/IFN-gamma mixture-induced inflammation in human keratinocyte and atopic dermatitis-like skin lesions in Nc/Nga mice by mineral-balanced deep sea water. Biomed Pharmacother, 2018. 1331-1340.
    11.Y. Hataguchi, H. Tai, H. Nakajima, H. Kimata. Drinking deep-sea water restores mineral imbalance in atopic eczema/dermatitis syndrome. Eur J Clin Nutr, 2005. 1093-1096.
    12.Bak JP, Kim YM, Son J, Kim CJ, Kim EH, Application of concentrated deep sea water inhibits the development of atopic dermatitis-like skin lesions in NC/Nga mice. BMC Complement Altern Med, 2012. 26, 12-108.
    13.Nakatsuji T, Kao MC, Fang JY, Zouboulis CC, Zhang L, Gallo RL, Huang CM. Antimicrobial property of lauric acid against Propionibacterium acnes: its therapeutic potential for inflammatory acne vulgaris. J Invest Dermatol, 2009. 129(10), 2480-2488
    14.Mouser PE, et al. Propionibacterium acnes-reactive T helper-1 cells in the skin of patients with acne vulgaris. J Investig Dermatol, 2003. 121(5), 1226-8.
    15.Shaheen, B., and M. Gonzalez. Acne sans P. acnes. Journal of the European Academy of Dermatology and Venereology, 2013. 27 (1), 1-10.
    16.Yoon, J.Y., H.H. Kwon, S.U. Min, D.M. Thiboutot, and D.H. Suh. Epigallocatechin-3-gallate improves acne in humans by modulating intracellular molecular targets and inhibiting P. acnes. The Journal of Investigative Dermatology, 2013. 133 (2), 429-440.
    17.Leyden JJ. Therapy for acne vulgaris. N Engl J Med, 1997. 336(16), 1156-62.
    18.Takeuchi, O., and S. Akira. Pattern recognition receptors and inflammation. Cell, 2010. 140 (6), 805-820.
    19.Wang, Y.Y., A.R. Ryu, S. Jin, Y.M. Jeon, and M.Y. Lee. Chlorin e6-mediated photodynamic therapy suppresses P. acnes-induced inflammatory response via NFkB and MAPKs signaling pathway. PLoS One, 2017. 12 (1), e0170599.
    20.Zhao, Y., C.L. Wang, R.M. Li, T.Q. Hui, Y.Y. Su, Q. Yuan, X.D. Zhou, and L. Ye. Wnt5a promotes inflammatory responses via nuclear factor kappaB (NFkB) and mitogen-activated protein kinase (MAPK) pathways in human dental pulp cells. The Journal of Biological Chemistry, 2014. 289 (30), 21028-21039.
    21.Li, W.-H. et al. p38 MAP kinase inhibition reduces Propionibacterium acnes-induced inflammation in vitro. Dermatol Ther, 2015. 5, 53-66.
    22.Proksch, E., Nissen, H. P., Bremgartner, M., and Urquhart, C., Bathing in a magnesium-rich Dead Sea salt solution improves skin barrier function, enhances skin hydration, and reduces inflammation in atopic dry skin. Int J Dermatol, 2005. 44(2), 151-7.
    23.Lin Z-C, et al. Eupafolin nanoparticles protect HaCaT keratinocytes from particulate matter-induced inflammation and oxidative stress. Int J Nanomedicine, 2016. 11, 3907.
    24.Huang W-C, et al. Anti-bacterial and anti-inflammatory properties of capric acid against Propionibacterium acnes: a comparative study with lauric acid. J Dermatol Sci, 2014. 73(3), 232-40.
    25.Lee W-R, et al. The protective effects of Melittin on Propionibacterium acnes–induced inflammatory responses in vitro and in vivo. J Investig Dermatol, 2014. 134(7), 1922-30.
    26.Lyte P, Sur R, Nigam A, Southall MD. Heat-killed Propionibacterium acnes is capable of inducing inflammatory responses in skin. Exp Dermatol, 2009. 18(12), 1070-2.
    27.Grange PA, et al. Nicotinamide inhibits Propionibacterium acnes-induced IL-8 production in keratinocytes through the NF-kB and MAPK pathways. J Dermatol Sci, 2009. 56(2), 106-12.
    28.Aubin, G. G., Portillo, M. E., Trampuz, A. & Corvec, S. Propionibacterium acnes, an emerging pathogen: From acne to implantinfections, from phylotype to resistance. Med Mal Infect, 2014. 44, 241-250.
    29.Grange, P. A. et al. Production of superoxide anions by keratinocytes initiates P. acnes-induced inflammation of the skin. PLoS Pathog 5, 2009. e1000527.
    30.Huang, Y.-C., Yang, C.-H., Li, T.-T., Zouboulis, C. C. & Hsu, H.-C. Cell-free extracts of Propionibacterium acnes stimulate cytokine production through activation of p38 MAPK and Toll-like receptor in SZ95 sebocytes. Life Sci, 2015. 139, 123-131.
    31.Lee, W.-R. et al. The protective effects of melittin on Propionibacterium acnes-induced inflammatory responses in vitro and in vivo. J Invest Dermatol, 2014. 134, 1922-1930.
    32.Kwon, M.-J., Han, J., Kim, B. H., Lee, Y. S. & Kim, T.-Y. Superoxide dismutase 3 suppresses hyaluronic acid fragments mediated skin inflammation by inhibition of toll-like receptor 4 signaling pathway: superoxide dismutase 3 inhibits reactive oxygen speciesinduced trafficking of toll-like receptor 4 to lipid rafts. Antioxid Redox Signal, 2011. 16, 297-313.
    33.Kim, J. et al. Activation of toll-like receptor 2 in acne triggers in-flammatory cytokine responses. J Immunol, 2002. 169, 1535-1541.
    34.Kistowska, M. et al. IL-1b drives inflammatory responses to Propionibacterium acnes in vitro and in vivo. J Invest Dermatol 134, 2014. 677-85.
    35.Dispenza, M. C. et al. Systemic isotretinoin therapy normalizes exaggerated TLR-2-mediated innate immune responses in acne patients. J Invest Dermatol, 2012. 132, 2198-2205.
    36.B.G. Ha, E.J. Shin, J.E. Park, Y.H. Shon, Anti-diabetic effect of balanced deep-sea water and its mode of action in high-fat diet induced diabetic mice, Mar. Drugs 11, 2013. 4193-4212.

    無法下載圖示 本全文未授權公開
    QR CODE