簡易檢索 / 詳目顯示

研究生: 朱恩德
Chu, En-De
論文名稱: 因奈米級侷限水膜誘發電洞摻雜的單層石墨烯於二氧化矽基板表面的奈米級摩擦力學之特性
Frictional characteristics of nano-confined water-mediated hole-doped single-layer graphene on silica surface
指導教授: 邱顯智
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 52
中文關鍵詞: 單層石墨烯奈米級水膜原子力顯微鏡奈米磨潤力學
英文關鍵詞: Single-Layer Graphene, Nano-Confined Water, Atomic Force Microscopy, Nanotribology
DOI URL: http://doi.org/10.6345/NTNU201901165
論文種類: 學術論文
相關次數: 點閱:112下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們研究了因奈米級侷限水膜誘發電洞摻雜的單層石墨烯於二氧化矽基板表面的奈米級摩擦力學性質。我們利用原子力顯微鏡量測電洞摻雜的表面電位以及表面摩擦大小時,並且在表面電位圖與摩擦訊號圖觀察到因奈米級水膜存在而形成的多邊形區域,而且多邊形區域比其四周區域擁有較高的表面電位以及較大的摩擦訊號。存在於單層石墨烯與二氧化矽基板間的的奈米級水膜會使單層石墨烯的電洞摻雜效應,因而產生帶正電且親水性的表面。而親水性的表面則有利於大氣中水分子吸附。因此,當我們在量測摩擦力過程時,針尖與單層石墨烯表面間有奈米級毛細水橋的形成,導致表面的摩擦力與表面吸附力的增加。此外,由於不同表面的濕潤性質,我們分別在多邊形區域內外發現摩擦力對速率關係呈現正相關與負相關。未來,我們若是能調控單層石墨烯與粗糙二氧化矽基板之間奈米級水膜的數量或是液體分子的極性,則可進一步操控單層石墨烯表面摩擦特性。我們的實驗結果將可能應用於微奈米機電系統中的元件中。

    We have investigated the frictional properties of single-layer graphene (SLG) coated rough silica substrate under the influence of nano-confined hydration layer underneath SLG. Through the friction and surface potential measurements by atomic force microscopy (AFM), we found polygonal features in AFM images of SLG-protected silica surface that exhibit simultaneously larger friction and higher surface potential as compared to their surrounding areas due to water layers confined under SLG. Nano-confined water layers at the SLG-silica interface can induce the hole-doping effect in SLG, resulting in a more positively-charged and hydrophilic surface that favors adsorption of ambient water molecules. Therefore, during friction measurements, nanoscale capillary bridges can form within the interstices of AFM probe-SLG contact, leading to larger adhesion and friction. The friction forces were found to respectively have negative and positive dependence on the sliding velocity inside and outside the polygonal regions due to different surface wettability. Hence, it is possible to manipulate the frictional properties of SLGcoated silica by the amount of hydration layer confined underneath SLG. Our results may find applications in friction control for future nano-devices.

    摘要 ii Abstract iii 致謝 iv 目錄 v 圖目錄 vii 表目錄 ix 第1章 序論 1 第2章 原子力顯微鏡簡介 5 2-1 原子力顯微鏡技術發展 5 2-2 原子力顯微鏡工作原理 6 2-3 原子力顯微鏡基本模式介紹 7 2-3-1 接觸式模式(contact mode) 8 2-3-2 非接觸式模式(non-contact mode) 8 2-3-3 輕敲式模式(tapping mode) 9 2-4 力與距離關係圖(force-distance curve) 9 2-5 原子力顯微鏡探針彈性係數(spring constant)校正 11 2-6 側向力顯微鏡(lateral force microscope, LFM) 12 2-6-1 側向力顯微鏡原理 12 2-6-2 側向力顯微鏡探針扭轉靈敏度(torsional sensitivity)校正原理 13 2-7 克氏探針表面電位顯微鏡-振幅調控模式(amplitude modulated-kelvin probe force microscope, AM-KPFM) 16 第3章 奈米級摩擦力學簡介 19 3-1 摩擦力的歷史與巨觀尺度的摩擦力介紹 19 3-2 奈米級摩擦力學介紹與特性 20 3-2-1 奈米級摩擦力學與古典接觸力學 20 3-2-2 奈米級摩擦力學與移動速率的關係 22 3-2-3 環境濕度對奈米級摩擦力學的影響 23 第4章 實驗方法與樣品製備 25 4-1 石墨烯簡介 25 4-2 石墨烯製備 26 4-2-1 機械剝離法 26 4-2-2 化學氣相沉積法 27 4-3 二氧化矽基板製備 28 4-3-1 氧電漿對粗糙二氧化矽基板之影響 29 4-4 石墨烯轉印方法 30 4-4-1 氣泡剝離法 30 4-5 表面電位性質量測 32 4-6 摩擦性質量測 32 4-7 環境濕度系統控制 33 4-8 拉曼光譜性質量測 33 第5章 實驗結果與討論 36 5-1 單層石墨烯/粗糙二氧化矽基板表面形貌性質 36 5-2 拉曼光譜分析 36 5-3 表面電位量測結果 37 5-3-1 奈米級水膜對單層石墨烯表面電位之影響 39 5-4 表面摩擦力量測結果 40 5-4-1 奈米級水膜對單層石墨烯摩擦係數之影響 40 5-4-2 奈米級水膜對單層石墨烯摩擦力與速率的關係 42 5-5 加熱反應對單層石墨烯表面電位與表面摩擦力之影響 43 5-6 單層石墨烯表面電位與摩擦力隨時間之變化 46 第6章 結論 48

    [1] C. Lee, X. Wei, J. W. Kysar, and J. Hone, 321, 385 (2008).
    [2] D. Prasai, J. C. Tuberquia, R. R. Harl, G. K. Jennings, and K. I. Bolotin, ACS Nano 6, 1102 (2012).
    [3] S. Chen et al., ACS Nano 5, 1321 (2011).
    [4] J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Nano Letters 8, 2458 (2008).
    [5] C. Lee, Q. Li, W. Kalb, X.-Z. Liu, H. Berger, R. W. Carpick, and J. Hone, 328, 76 (2010).
    [6] Q. Li, C. Lee, R. W. Carpick, and J. Hone, 247, 2909 (2010).
    [7] Y. Peng, Z. Wang, and K. Zou, Langmuir 31, 7782 (2015).
    [8] H. Lee, N. Lee, Y. Seo, J. Eom, and S. Lee, Nanotechnology 20, 325701 (2009).
    [9] S. Kwon, J.-H. Ko, K.-J. Jeon, Y.-H. Kim, and J. Y. Park, Nano Letters 12, 6043 (2012).
    [10] D. Berman, A. Erdemir, and A. V. Sumant, Materials Today 17, 31 (2014).
    [11] J. C. Spear, J. P. Custer, and J. D. Batteas, Nanoscale 7, 10021 (2015).
    [12] G. Paolicelli, M. Tripathi, V. Corradini, A. Candini, and S. Valeri, Nanotechnology 26, 055703 (2015).
    [13] Z. Ye, A. Otero-de-la-Roza, E. R. Johnson, and A. Martini, Nanotechnology 25, 425703 (2014).
    [14] Z. Ye, A. Balkanci, A. Martini, and M. Z. Baykara, Physical Review B 96, 115401 (2017).
    [15] Y. Dong, Journal of Physics D: Applied Physics 47, 055305 (2014).
    [16] J. Rafiee, X. Mi, H. Gullapalli, A. V. Thomas, F. Yavari, Y. Shi, P. M. Ajayan, and N. A. Koratkar, Nature Materials 11, 217 (2012).
    [17] C.-J. Shih, M. S. Strano, and D. Blankschtein, Nature Materials 12, 866 (2013).
    [18] C.-J. Shih, Q. H. Wang, S. Lin, K.-C. Park, Z. Jin, M. S. Strano, and D. Blankschtein, Physical Review Letters 109, 176101 (2012).
    [19] M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. v. Klitzing, and J. H. Smet, Nano Letters 10, 1149 (2010).
    [20] R. A. Nistor, M. A. Kuroda, A. A. Maarouf, and G. J. Martyna, Physical Review B 86, 041409 (2012).
    [21] J. Shim, C. H. Lui, T. Y. Ko, Y.-J. Yu, P. Kim, T. F. Heinz, and S. Ryu, Nano Letters 12, 648 (2012).
    [22] T. R. J. Bollmann, L. Y. Antipina, M. Temmen, M. Reichling, and P. B. Sorokin, Nano Research 8, 3020 (2015).
    [23] S. Goniszewski, M. Adabi, O. Shaforost, S. M. Hanham, L. Hao, and N. Klein, Scientific Reports 6, 22858 (2016).
    [24] A. Ashraf, Y. Wu, M. C. Wang, K. Yong, T. Sun, Y. Jing, R. T. Haasch, N. R. Aluru, and S. Nam, Nano Letters 16, 4708 (2016).
    [25] G. Hong et al., Nano Letters 16, 4447 (2016).
    [26] T. Tian, S. Lin, S. Li, L. Zhao, E. J. G. Santos, and C.-J. Shih, Langmuir 33, 12827 (2017).
    [27] A. Cimas, F. Tielens, M. Sulpizi, M. P. Gaigeot, and D. Costa, J Phys Condens Matter 26, 244106 (2014).
    [28] H. Bluhm, T. Inoue, and M. Salmeron, Surface Science 462, L599 (2000).
    [29] T. O. Wehling, M. I. Katsnelson, and A. I. Lichtenstein, Chemical Physics Letters 476, 125 (2009).
    [30] T. O. Wehling, A. I. Lichtenstein, and M. I. Katsnelson, Applied Physics Letters 93, 202110 (2008).
    [31] E. Gnecco, R. Bennewitz, T. Gyalog, C. Loppacher, M. Bammerlin, E. Meyer, and H. J. Güntherodt, Physical Review Letters 84, 1172 (2000).
    [32] E. Riedo, F. Lévy, and H. Brune, Physical Review Letters 88, 185505 (2002).
    [33] E. Riedo, E. Gnecco, R. Bennewitz, E. Meyer, and H. Brune, Physical Review Letters 91, 084502 (2003).
    [34] E. Riedo and E. Gnecco, Nanotechnology 15, S288 (2004).
    [35] C. Greiner, J. R. Felts, Z. Dai, W. P. King, and R. W. Carpick, ACS Nano 6, 4305 (2012).
    [36] H.-P. Chang, E.-D. Chu, Y.-T. Yeh, Y.-C. Wu, F.-Y. Lo, W.-H. Wang, M.-Y. Chern, and H.-C. Chiu, Langmuir 33, 8362 (2017).
    [37] H. Lee, J.-H. Ko, J. S. Choi, J. H. Hwang, Y.-H. Kim, M. Salmeron, and J. Y. Park, The Journal of Physical Chemistry Letters 8, 3482 (2017).
    [38] G. Binnig, C. F. Quate, and C. Gerber, Phys Rev Lett 56, 930 (1986).
    [39] H.-J. Butt, B. Cappella, and M. Kappl, Surface Science Reports 59, 1 (2005).
    [40] J. L. Hutter and J. Bechhoefer, Review of Scientific Instruments 64, 1868 (1993).
    [41] S. M. Cook, K. M. Lang, K. M. Chynoweth, M. Wigton, R. W. Simmonds, and T. E. Schäffer, Nanotechnology 17, 2135 (2006).
    [42] B. Saha, E. Liu, and S. B. Tor, in Nano-tribology and Materials in MEMS, edited by S. K. Sinha, N. Satyanarayana, and S. C. Lim (Springer Berlin Heidelberg, Berlin, Heidelberg, 2013), pp. 1.
    [43] M. Varenberg, I. Etsion, and G. Halperin, Review of Scientific Instruments 74, 3362 (2003).
    [44] A. Fall, B. Weber, M. Pakpour, N. Lenoir, N. Shahidzadeh, J. Fiscina, C. Wagner, and D. Bonn, Physical Review Letters 112, 175502 (2014).
    [45] B. Bhushan, Nanotribology and Nanomechanics: An Introduction (Springer Publishing Company, Incorporated, 2008).
    [46] V. Popov, Contact Mechanics and Friction: Physical Principles and Applications 2010), Vol. 55.
    [47] K. L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985).
    [48] F. P. Bowden and D. Tabor, American Journal of Physics 19, 428 (1951).
    [49] J.-U. Lee, D. Yoon, H. Kim, S. W. Lee, and H. Cheong, Physical Review B 83, 081419 (2011).
    [50] H. Liu, S. Imad-Uddin Ahmed, and M. Scherge, Thin Solid Films 381, 135 (2001).
    [51] L. Bocquet, E. Charlaix, S. Ciliberto, and J. Crassous, Nature 396, 735 (1998).
    [52] A. K. Geim and K. S. Novoselov, Nature Materials 6, 183 (2007).
    [53] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, 306, 666 (2004).
    [54] A. K. Geim and P. Kim, Scientific American 298, 90 (2008).
    [55] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320, 1308 (2008).
    [56] S. Park and R. S. Ruoff, Nature Nanotechnology 4, 217 (2009).
    [57] W. Yang et al., Nature Materials 12, 792 (2013).
    [58] M.-C. Chuang, H.-M. Chien, Y.-H. Chain, G.-C. Chi, S.-W. Lee, and W. Y. Woon, Carbon 54, 336 (2013).
    [59] Y. Z. Hong, W. H. Chiang, H. C. Tsai, M. C. Chuang, Y. C. Kuo, L. Y. Chang, C. H. Chen, J. D. White, and W. Y. Woon, Nanotechnology 28, 395704 (2017).
    [60] M. Yi and Z. Shen, Journal of Materials Chemistry A 3, 11700 (2015).
    [61] M. R. Amirzada, A. Tatzel, V. Viereck, and H. Hillmer, Applied Nanoscience 6, 215 (2016).
    [62] A. U. Alam, M. M. R. Howlader, and M. J. Deen, Journal of Micromechanics and Microengineering 24 (2014).
    [63] S. Tamulevičius, I. Prosyčevas, A. Guobienė, and J. Puišo, Solid State Phenomena 99-100, 175 (2004).
    [64] H. Van Ngoc, Y. Qian, S. K. Han, and D. J. Kang, Scientific Reports 6, 33096 (2016).
    [65] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, Nano Letters 9, 4359 (2009).
    [66] H. C. Lee, W.-W. Liu, S.-P. Chai, A. R. Mohamed, A. Aziz, C.-S. Khe, N. M. S. Hidayah, and U. Hashim, RSC Advances 7, 15644 (2017).
    [67] C. J. L. d. l. Rosa, J. Sun, N. Lindvall, M. T. Cole, Y. Nam, M. Löffler, E. Olsson, K. B. K. Teo, and A. Yurgens, Applied Physics Letters 102, 022101 (2013).
    [68] L. Gao et al., Nature Communications 3, 699 (2012).
    [69] L. Greenspan, Humidity Fixed Points of Binary Saturated Aqueous Solutions 1977), Vol. 81A.
    [70] A. Das, B. Chakraborty, and A. K. Sood, Bulletin of Materials Science 31, 579 (2008).
    [71] K. Xu, P. Cao, and J. R. Heath, Science 329, 1188 (2010).
    [72] P. Bampoulis, V. J. Teernstra, D. Lohse, H. J. W. Zandvliet, and B. Poelsema, The Journal of Physical Chemistry C 120, 27079 (2016).
    [73] Q. Li, J. Song, F. Besenbacher, and M. Dong, Accounts of Chemical Research 48, 119 (2015).
    [74] G. Algara-Siller, O. Lehtinen, F. C. Wang, R. R. Nair, U. Kaiser, H. A. Wu, A. K. Geim, and I. V. Grigorieva, Nature 519, 443 (2015).
    [75] J. Lee, M. Atmeh, and D. Berman, Carbon 120, 11 (2017).
    [76] M. Temmen, O. Ochedowski, M. Schleberger, M. Reichling, and T. R. J. Bollmann, New Journal of Physics 16 (2014).

    無法下載圖示 電子全文延後公開
    2024/11/01
    QR CODE