簡易檢索 / 詳目顯示

研究生: 陳瑩甄
Chen, Ying-Chen
論文名稱: 急性低氧暴露對阻力運動中自覺努力程度和生理反應之影響
Influence of Acute Hypoxic Exposure on Rating of Perceived Exertion and Physiological Responses during Resistance Exercise
指導教授: 何仁育
Ho, Jen-Yu
學位類別: 碩士
Master
系所名稱: 運動競技學系
Department of Athletic Performance
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 69
中文關鍵詞: 間歇性低氧訓練重量訓練Borg CR-10 量表
英文關鍵詞: intermittent hypoxic training, weight training, Borg CR-10 scale
論文種類: 學術論文
相關次數: 點閱:81下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:探討低氧環境下進行阻力運動時,對自覺努力程度(rating of perceived exertion,RPE)和生理反應之影響。方法:參與者為規律阻力運動經驗之12名健康男性(年齡24.25 ± 2.63歲,身高176.28 ± 7.17公分,體重73.9 ± 7.95公斤),在完成蹲舉(back squat)與仰臥推舉(bench press)最大肌力測驗後(1 repetition maximum testing,1RM testing),依平衡次序法與重複量數之實驗設計,參與者分別先在常氧或低氧 (FiO2=15%) 環境下,進行低強度(30% of 1RM,12反覆次數)、中強度(60% of 1RM,6反覆次數)、高強度(90% of 1RM,4反覆次數)之蹲舉與仰臥推舉兩種阻力運動,並在不同運動強度結束後,馬上記錄RPE(局部、全身)、心跳率、血乳酸、血氧飽和度(peripheral oxygen saturation, SPO2)和血壓。參與者休息一週後,依平衡次序法,完成另一個不同環境下的阻力測驗。結果:在仰臥推舉時,不管在低氧或常氧環境下,隨著運動強度的增加,RPE、心跳率與血乳酸也顯著增加(p≤.05),但低氧與常氧下之RPE與血乳酸並沒有顯著差異(p>.05),僅心跳率在低氧下顯著高於常氧下;在蹲舉時,不管在低氧或常氧環境下,隨著運動強度的增加,RPE與心跳率也顯著增加,但血乳酸則無差異。低氧與常氧下之RPE、心跳率與血乳酸皆沒有差異。另外,局部和全身RPE與心跳率和血乳酸均達顯著相關。結論:在低氧與常氧環境下進行阻力運動時,RPE確實能夠反應出阻力運動之強度,且與心跳率、血乳酸呈顯著相關,RPE的使用能有效評估低氧環境下阻力運動的強度。

    Purpose: This study aimed to examine the influence of acute hypoxic exposure on rating of perceived exertion (RPE) and physiological responses during resistance exercise. Methods: After completing one repetition maximum (1RM) testing, 12 resistance-trained male volunteers (24.25 ± 2.63 yrs, 176.28 ± 7.17cm, 73.9 ± 7.95kg) performed back squat and bench press exercises under hypoxia (FiO2=15%) and normoxia in a crossover counterbalanced design. All participants performed back squat and then bench press exercises at low intensity (L; 1 set of 12 repetitions at 30%1RM), moderate intensity(M; 1 set of 6 repetitions at 60%1RM) and high intensity (H; 1 set of 4 repetitions at 90%of 1RM). RPE(Local,Overall), heart rate(HR), blood lactate, peripheral oxygen saturation (SPO2) and blood pressures(BP) were obtained immediately after each set of exercises for all intensities. Results: For bench press, statistical analyses revealed RPE, HR and blood lactate increased as exercise intensity increased regardless of environmental conditions (p≤.05). No significant differences in RPE and blood lactate were found between hypoxia and normoxia(p>.05), except that HR were significantly higher in hypoxia than in normoxia. For back squat, RPE and HR increased as exercise intensity increased during either hypoxia or normoxia. However, blood lactate remained similar among all intensities. No significant differences in RPE, HR and blood lactate were found between hypoxia and normoxia. In addition, both local and overall RPE were significantly correlated with HR and blood lactate. Conclusion: When performing resistance exercise under hypoxia, RPE can reflect on exercise intensity and highly correlated with HR and blood lactate. RPE can be used to effectively monitor resistance exercise intensity under hypoxia.

    中文摘要....................................................i 英文摘要...................................................ii 誌謝.....................................................iii 目次......................................................iv 表次......................................................vi 圖次.....................................................vii 第壹章 緒論.................................................1 第一節 前言..............................................1 第二節 問題背景...........................................3 第三節 研究目的...........................................4 第四節 研究假設...........................................5 第五節 研究範圍與限制......................................5 第六節 名詞操作性定義......................................6 第七節 研究的重要性........................................7 第貳章 相關文獻探討...........................................8 第一節 自覺努力程度之介紹..................................8 第二節 自覺努力程度與生理反應之相關性探討....................10 第三節 低氧環境與運動訓練.................................13 第四節 低氧訓練對運動表現之影響............................15 第五節 文獻探討總結......................................17 第参章 研究方法.............................................19 第一節 研究參與者........................................19 第二節 實驗時間與地點.....................................19 第三節 實驗設計..........................................19 第四節 研究方法與步驟.....................................21 第五節 資料處理與統計分析..................................25 第肆章 結果................................................26 第一節 參與者基本資料.....................................26 第二節 參與者運動前之安靜生理值.............................26 第三節 RPE之信效度.......................................28 第四節 不同環境對阻力運動中自覺努力程度之影響..................31 第五節 蹲舉與仰臥推舉之局部RPE與全身RPE之比較.................35 第六節 不同環境對阻力運動中生理反應之影響.....................36 第七節 局部和全身 RPE與生理反應之相關性......................43 第伍章 討論................................................46 第一節 RPE之信效度.......................................46 第二節 不同環境對阻力運動中自覺努力程度之影響..................47 第三節 蹲舉與仰臥推舉之局部RPE與全身RPE之比較.................49 第四節 不同環境對阻力運動中生理反應之影響.....................50 第五節 局部和全身RPE與生理反應之相關性.......................54 第六節 結論與建議.........................................56 引用文獻...................................................57 附錄......................................................62 附錄一 參與者健康情況與運動調查表............................62 附錄二 參與者知情同意書....................................64 附錄三 Borg (CR-10).....................................68 個人小傳...................................................69

    王順正(1999)。運動強度的判定(自覺量表)。取自國立中正大學,運動科學教育研究室網址http://epsport.ccu.edu.tw/epsport/week/show.asp?repno=18
    林正常(1997)。運動生理學。台北市:師大書苑。
    林正常(譯)(2005)。運動生理學。台北市:藝軒圖書。(Powers, S. K., Howley, E. T., 2002)
    吳忠芳(1997)。運動訓練負荷的監控。中華體育季刊,11(1),71-79。
    柯志宏(2008)。Borg 6~20量表和OMNI量表之自覺強度與各生理反應之相關比較。未出版碩士論文,國立臺灣師範大學,台北市。
    彭貴賢,徐欣億,劉德智,葉益銘,羅仁駿,張淑貞(2010)。高地訓練對長跑選手肌肉氧氣飽和度的影響,大專體育學刊,12(4),99-106。
    黃耀宗(1998)。運動跟著感覺走—運動自覺量表在運動訓練及測驗上的應用。中華體育季刊,12(2),47-52。
    黃鱗棋、王錠堯、張嘉澤(2008)。高濃度氧氣對高強度間歇運動負荷之血乳酸、心跳率與RPE之影響。運動教練科學。11,13 -22。
    簡鸝慧(2010)。增補抗氧化劑對急性低氧運動測試之影響。未出版碩士論文,國立台灣師範大學,台北市。
    豐東洋(2004)。高地訓練對無氧運動能力影響之探討。中華體育季刊,18(2),129-134。
    Armstrong, L. E. (2000). Performing in extreme environments. Champaign, IL: Human Kinetics.
    Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine & Science in Sports, 14(5), 377-381.
    Bailey, D. M., & Davies, B. (1997). Physiological implications of altitude training for endurance performance at sea level: a review. British Journal of Sports Medicine,
    31(3), 183-190.
    Bailey, D. M. Davies, B., Romer, L., Castell, L., Newsholme, E., & Gandy, G. (1998). Implications of moderate altitude training for sea-level endurance in elite distance runners. European Journal of Applied Physiology, 78(4), 360-368.
    Borg, G. (1990).Psychophysical scaling with applications in physical work and the perception of exertion. Scandinavian Journal of Work Environment Health. 16(1), 55-58.
    Day, M. L., McGuigan, M. R., Brice, G., & Foster, C. (2004). Monitoring exercise intensity during resistance training using the session RPE scale. The Journal of Strength and Conditioning Research, 18(2), 353-358.
    Daniels, J., & Oldridge, N. (1970). The effect of alternate exposure to altitude and sea level On world-class middle-distance runners. Medicine & Science in Sports, 2, 107-112.
    Demello, J. J., Cureton, K.J., Boineau, R. E., & Singh, M. M. (1987). Ratings of perceived exertion at the lactate threshold in trained and untrained men and women. Medicine
    & Science in Sports, 19(4), 354-362.
    Duncan, M., Al-Nakeeb, Y., & Scurr, J. (2006). Perceived exertion is related to muscle activity during leg extension exercise. Research in Sports Medicine, 14(3), 179-189.
    Eston, R. G., & Williams, J. G. (1988). Reliability of ratings of perceived effort regulation of exercise intensity. British Journal of Sports Medicine, 22(4), 153-155.
    Ekblom, B., & Golobarg, A. N. (1971). The influence of physical training and other factors on the subjective rating of perceived exertion. Acta Physiologica Scandinavica, 83(3), 399-406.
    Friedmann, B., Kinscherf, R., Borisch, S., Richter, G., Bortsch, P., & Billeter, R. (2003). Effects of low-resistance/high-repetition strength training in hypoxia on muscle structure and gene expression. Pflugers Archiv European Journal of Physiology, 446(6), 742-751.
    Ferretti, G. Hauser , H & Di-Prampero, P. E. (1990). Maximal muscular power before and after exposure to chronic hypoxia. International Journal of Sports Medicine,11(1), 31-34.
    Gore, C. J., Hahn, A. G., Aughey, R. J., Martin, D. T., Ashenden, M. J., & Clark, S. A. (2001). Live high: train low increases muscle buffer capacity and submaximal cycling efficiency. Acta Physiologica Scandinavica, 173(3), 275-286.
    Green, J. M. Pritchett, R. C., Crews, T. R., Tucker, D. C., McLester, J. R., & Wickwirem P. J.(2007). RPE drift during cycling in 18 degrees C vs 30 degrees C wet bulb globe
    temperature. Journal of Sports Medicine and Physical Fitness, 47(1), 18-24.
    Gearhart, R. F. Gearhart, R. F., Goss, F. L., Lagally, K. M., Jakicic, J. M., Gallagher, J., Gallagher, K. I., Robertson, R. J. et al. (2002). Ratings of perceived exertion in active muscle during high-intensity and low-intensity resistance exercise. Journal of Strength and Conditioning Research, 16(1), 87-91.
    Grover, R. F., Weil, R. F. & Reeves, J. T. (1986). Cardiovascular adaptation to exercise at high altitude. Exercise and Sport Sciences Reviews, 14(1), 269-302.
    Katsanos, C. S., & Moffatt, R. J. (2005). Reliability of heart rate responses at given ratings of perceived exertion in cycling and walking. Research Quarterly for Exercise and Sport, 76(4), 433-439.
    Kon, M., Ikeda, T., Homma, T., Akimoto, T., Suzuki, Y., Kawahara, T. (2009). Effects of acute hypoxia on metabolic and hormonal responses to resistance exercise. Medicine
    & Science in Sports & Exercise, 42(7), 1279-1285.
    Lagally, K. M., Robertson, R. J., Gallagher, K. I., Gearhart, R., & Goss, F. L.(2002). Ratings of perceived exertion during low-and high-intensity resistance exercise by young adults. Perceptual and Motor Skills, 94(3), 723-731.
    Lagally, K. M., Robertson, R.J., Gallagher, K.I., Goss, F. L., Jakicic, J. M., Lephart, S.M., McCaw, S. T., Goodpaster, B.et al. (2002). Perceived exertion,electromyography, and blood lactate during acute bouts of resistance exercise.
    Medicine & Science in Sports and Exercise, 34(3), 552-559.
    Lagally, K. M., & Amorose, A. J. (2007). The validity of using prior ratings ratings of perceived exertion to regulate resistance exercise intensity. Perceptual & Motor
    Skills, 104(2), 534-542.
    Linossier, M. T., Dormois, D., Arsac, L., Denis, C., Gay, J. P., & Geyssant, A. (2000). Effect of hyperoxia on aerobic and anaerobic performances and muscle metabolism
    during maximal cycling exercise. Acta Physiologica Scandinavica, 168(3), 403-411.
    Maw, G.J., Boutcher, S.H., & Taylor, N.A. (1993). Ratings of perceived exertion and affect in hot and cool environments. European Journal of Applied Physiology and Occupational Physiology. 67(2), 174-179.
    Marinov, B., Kostianev, S., & Turnovska, T. (2002).Ventilatory efficiency and rate of perceived exertion in obese and non-obese children performing standardized
    exercise .Clinicl Physiology Functional Imaging. 22(4), 254-260.
    Mahon, A. D, & Ray, M. L. (1995).Ratings of perceived exertion at maximal exercise in children performing different graded exercise test. Journal of Sports Medicine and Physical Fitness, 35(1), 38-42.
    Morgan, W. P. (1973). Psychological factors influencing perceived exertion. Medicine & Science in Sports, 5(2), 97-103.
    Noble, B. J., Borg, G. A., Jacobs, I., Ceci, R., & Kaiser, P. (1983). A category-ratio perceived exertion scale: relationship to blood and muscle lactates and heart rate. Medicine & Science in Sports, 15(6), 523-528.
    Nishimura, A., Sugita, M., Kato, K., Fukuda, A., Sudo, A., & Uchida, A.(2010).Hypoxia increases muscle hypertrophy induced by resistance training. International Journal of
    Sports Physlology and Performance. 5(4), 497-508.
    Nummela, A., Jouste, P., & Rusko, H. (1996). Effect of living high and training low on sea level anaerobic performance in runners. Medicine & Science in Sports & Exercise, 28, 124.
    Nummela, A. & Ruskp, H. (2000). Acclimatization to altitude and normoxic training improve 400-m running performance at sea level. Journal of Sports Sciences, 18(6), 411-419.
    Robertson, R. J., Moyna, N.M., Sward, K.L., Millich, N.B., Goss, F.L., & Thompson, P. D.
    (2000). Gender comparison of RPE at absolute and relative physiological criteria. Medicine & Science in Sports & Exercise, 32(12), 2120-2129.
    Robertson, R. J., Gillespie, R.L, McCarthy J, & Rose, K, D. (1979). Differentiated perceptions of exertion: part I. mode of integration of regional signals. Perceptual and Motor Skills, 49(3), 683-689.
    Wilber, R. L. (2001). Current trends in altitude training. Sports Medicine, 31(4), 249-265.
    Wilber, R. L. (2004). Altitude training and athletic performance. Champaign, IL: Human Kinetics.
    Woorons, X., Mollard, P., Lamberto, C., Letournel, M., & Richalet, J. P. (2005). Effect of acute hypoxia on maximal exercise in trained and sedentary women. Medicine &
    Science in Sports & Exercise, 37(1), 147-154.
    Stray-Gundersen, J. Chapman, R. F., & Levine, B. D. (2001). “Living high-training low” altitude training improves sea level performance in male and female elite runners. Journal of Applied Physiology, 91(3), 1113-1120.
    Shephard, R. J., Vandewalle, H., Gil, V., Bouhlel, E., & Monod, H. (1992). Respiratory, muscular, and overall perceptions of effort: The influence of hypoxia and muscle mass. Medicine & Science in Sports & Exercise, 24(5), 556-567.
    Suminski, R. R. (1997). Perception of effort during resistance exercise. Journal of Strength and Conditioning Research, 11(4), 261-265.

    下載圖示
    QR CODE