簡易檢索 / 詳目顯示

研究生: 陳啟文
論文名稱: 表面處理對AZO/Si 異質接面太陽能電池之研究
Study of surface treatments on AZO/Si heterojunction solar cells
指導教授: 劉傳璽
Liu, Chuan-Hsi
阮弼群
Juan, Pi-Chun
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 65
中文關鍵詞: 太陽能電池AZO 薄膜蕭特基能障異質接面
英文關鍵詞: Solar cells, AZO films, Schottky barrier, heterojunction
論文種類: 學術論文
相關次數: 點閱:89下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用三種不同的酸液,分別為緩衝氧化蝕刻液 (BOE)、雙氧水(H2O2) 及稀鹽酸 (HCl) 去除 p 型矽基板上的二氧化矽,並使用直流磁控濺鍍法 (DC Magnetron Sputtering) 製程溫度分別為 298 K 及 573 K ,於基板上沉積一層厚度 100 nm 的 AZO 薄膜,沉積過程通入 40 sccm 的氬氣,之後將 Al 濺鍍在矽基板底部約 1 μm 作為下電極,製備 AZO/Si 異質接面太陽能電池。以穿透式電子顯微鏡 TEM 作結構分析、TEM-EDS 作區域成份分析、電容-電壓及電流-電壓量測儀作電性分析,探討不同表面處理及不同沉積溫度下,對 AZO/Si 異質接面太陽能電池的結構與光電特性的影響。
    實驗結果顯示以 H2O2 表面前處理,製程溫度為 573 K 時,在 IPCE 值上有較佳的表現,光電轉化率約 26.6%,且各個波段的轉換效率均大於其他兩項處理材料於該波段下的轉化率,可獲得較佳的光電流約 1.1×10-4 A/cm2。

    In this study, for the purpose of removing silicon dioxide on the p-type Si substrate, three different acids were used, buffered oxide etch solution (BOE), hydrogen peroxide (H2O2), and dilute hydrochloric acid (HCl).Additionally, the DC magnetron sputtering method was utilized under the process temperature of 298 K and 573 K. A layer of 100 nm AZO thin film was first deposited on the Si substrate. During the deposition, a flow of 40 sccm argon was infused. Al was sputtered on the bottom of the Si substrate as the bottom electrode. After the AZO/Si heterojunction solar cells were processed, the samples were analyzed in three ways: Transmission Electron Microscope for structural analysis, TEM-EDS for the regional component analysis, and C-V and I-V measurements for electrical analysis. These three methods explored the structure of AZO/Si heterojunction solar cell and the influence of photoelectric properties under different surface treatments and different deposition temperatures.

    The experimental results revealed that a better IPCE performance was obtained under H2O2 surface pre-treatment and process temperature of 573 K. Furthermore, the photoelectric conversion rate was about 26.6% and the conversion efficiency of each band was much better than the others. Also, the photocurrent density reached 1.1 × 10- 4 A/cm2.

    第一章 緒論 1 1.1 前言 1 1.2 本論文研究動機及方向 2 第二章 理論與文獻探討 3 2.1 太陽能電池之介紹 3 2.1.1 太陽能 3 2.1.2 太陽頻譜照度 3 2.1.3 太陽能光電研究發展 5 2.1.4 太陽能電池原理 6 2.1.5 太陽能電池等效電路及基本參數 8 2.1.6 太陽能電池種類 12 2.2 透明導電薄膜介紹 13 2.2.1 氧化鋅薄膜(ZnO) 13 2.2.2 AZO 薄膜 14 2.2.3 AZO 薄膜應用 15 2.3 薄膜成長機制 15 2.4 金屬與半導體接觸理論 16 2.4.1 蕭特基接觸 17 2.4.2 金屬與半導體的電流傳導機制 19 第三章 實驗步驟及研究方法 20 3.1 實驗流程 20 3.2 基板清洗及表面處理 21 3.3 製備AZO 薄膜 22 3.4 電流-電壓(I-V)量測法 24 3.5 電容-電壓(C-V)量測法 25 3.6 實驗量測設備 26 第四章 結果與討論 27 4.1 AZO/Si 異質接面物性分析 27 4.1.1 AZO/Si 異質接面之TEM 成份分析 27 4.1.2 AZO/Si 異質接面之TEM-EDS 成份分析 31 4.2 AZO/Si 異質接面電性分析 34 4.2.1 AZO/Si 異質接面光電特性 34 4.2.2 電流-電壓(I-V)特性量測與分析 36 4.2.3 變溫電流-電壓之蕭特基能障(ΦB)分析 40 4.2.4 電容-電壓(C-V)特性量測與分析 48 4.2.5 光電流轉換效應(IPCE)量測與分析 56 第五章 結論 60 參考文獻 61

    [1] British Petroleum, “BP Statistical Review of World Energy June 2011”, beyond petroleum, 2011.
    [2] 黃惠良,曾百亨,「太陽電池」,五南圖書出版股份有限公司,台北,2008。
    [3] 沈昌宏,謝嘉民,「矽基薄膜於太陽能電池之應用」,奈米通訊,第16卷,第2期,pp. 2-7,2009。
    [4] T. H. Wang, E. Iwaniczko, M. R. Page, D. H. Levi, Y. Yan,V. Yelundur, H. M. Branz, A. Rohatgi, and Q. Wang, “Effective interfaces in silicon heterojunction solar cells”, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, pp. 955- 958, 2005.
    [5] 施敏,「半導體元件物理與製作技術 (Semiconductor Devices Physics and Technology )」,張俊彥譯著,第三版,高立圖書有限公司,台北,2001。
    [6] 楊德仁,「太陽能電池材料」,五南圖書出版公司,台北,2008。
    [7] 羅光旭,蔡中,「太陽能電池技術-現況與展望」,經濟部能源委員會,台北,1987。
    [8] 蔡進譯,「超高效率太陽能電池-從愛因斯坦的光電效應談起」,物理雙月刊,第27卷,第5期,pp. 701-719,2005。
    [9] 張品全,「太陽電池專題報導」,科學發展專刊,第349期,pp. 23-29,2002。
    [10] 劉博文,「半導體元件物理」,高立圖書有限公司,台北,2003。
    [11] 莊嘉琛,「太陽能工程-太陽電池篇」,全華圖書股份有限公司,台北,2007。
    [12] 楊明輝,「金屬氧化物透明導電材料的基本原理」,工業材料雜誌,第179期,pp. 134-144,2001。
    [13] 楊明輝,「透明導電膜」,藝軒圖書出版社,2006.10。
    [14] 李玉華,「透明導電膜及其應用」,科儀新知,第12卷,第1期,pp. 94-101,1990。
    [15]X. L. Xua, S. P. Lau, and J. S. Chena, “Dependence of electrical and optical properties of ZnO films on substrate temperature”, Materials Science in Semiconductor Processing, vol. 4, issue 6, pp. 617-620, 2001.
    [16]X. W. Sun, L. D. Wang, and H. S. Kwok, “ Improved ITO thin films with a thin ZnO buffer layer by sputtering”, Thin Solid Films, vol. 360, pp. 75-81, 2000.
    [17] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain”, Nano Letters, vol. 7, no. 4, pp. 1003-1009, 2007.
    [18] Y. K. Tseng, C. J. Huang, H. M. Cheng, I. N. Lin, K. S. Liu, and I. C. Chen,“Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films”, Advanced Functional Materials, vol. 13, issue 10, pp. 811-814, 2003.
    [19] A. Talbi, F. Sarry, M. Elhakiki, L. Brizoual, O. Elmazria, P. Nicolay, and P. Alnot, “ZnO/quartz structure potentiality for surface acoustic wave pressure sensor”, Sensors and Actuators A: Physical, vol. 128, issue 1, pp. 78-83,2006.
    [20] J. B. Lee, H. J. Kim, S. G. Kim, C. S. Hwang, S. H. Hong, Y. H. Shin, and N. H. Lee, “Deposition of ZnO thin films by magnetron sputtering for a film bulk acoustic resonator”, Thin Solid Films, vol. 435, pp. 179-185, 2003.
    [21] S. Takata, T. Minami, and H. Nanto, “The stability of Al-doping ZnO transparent electrodes”, Thin Solid Films, vol. 135, pp. 183-187, 1986.
    [22] T. Minami, H. Sato, H. Nanto, and S. Takata, “Group III impurity doped zinc oxide thin films prepared by RF magnetron sputtering”, Japanese Journal of Applied Physics, vol. 24, pp. L781-L784, 1985.
    [23] Z. Q. Xu, H. Deng, Y. Li, Q. H. Guo, and Y. R. Li, “Characteristics of Al-doped c-axis orientation ZnO thin films prepared by the sol-gel method”, Materials Research Bulletin, vol. 41, issue 2, pp. 354-358, 2006.
    [24] W. Tang, and D. C. Cameron, “Aluminium-doped zinc oxide transparent conductors deposited by the sol–gel process”, Thin Solid Films, vol. 238, pp. 83-87, 1994.
    [25] H. Kim, C. M. Gilmore, J. S. Horwitz, A. Piqué, H. Murata, G. P. Kushto, R. Schlaf, Z. H. Kafafi, and D. B. Chrisey, “Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices”, Applied Physics Letters, vol. 76, issue 3, pp. 259-261, 2000.
    [26]B. Y. Oh, M. C. Jeong, T. H. Moon, W. Lee, and J. M. Myoung,“Transparent conductive Al-doped ZnO films for liquid crystal displays”, Journal of Applied Physics, vol. 99, issue 12, pp. 124505-1–124505-4, 2006.
    [27] J. Muller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells”, Solar Energy, vol. 77, issue 6, pp. 917-930, 2004.
    [28] 白木靖寬、吉田貞史,「薄膜工程學」,全華圖書股份有限公司,台北,2006。
    [29] 羅吉宗,「薄膜科技與應用」,修訂二版,全華圖書股份有限公司,台北,2008。
    [30] 李嗣涔,管傑雄,孫台平,「半導體元件物理」,三民書局,台北,1995。
    [31] D. A. Neamen 著,「半導體元件物理」,楊賜麟譯,初版,美商麥格羅.希爾國際股份有限公司,2005。
    [32] H. Angermann, J. Rappich, L. Korte, I. Sieber, E. Conrad, M. Schmidt, K. Hu¨bener, J. Polte, and J. Hauschild, “Wet-chemical passivation of atomically flat and structured silicon substrates for solar cell application”, Applied Surface Science, vol.254, issue 12, pp. 3615-3625, 2008.
    [33] Y. D. Kim, S. Park, J. Song, S. J. Tark, M. G. Kang, S. Kwon, S. Yoon, and D. Kim, “Surface passivation of crystalline silicon wafer via hydrogen plasma pre-treatment for solar cells”, Solar Energy Materials and Solar Cells, vol. 95, pp. 73-86, 2011.
    [34] S. Petitdidier, V. Bertagna, N. Rochat, D. Rouchon, P. Besson, R. Erre, and M. Chemla, “Growth mechanism and characterization of chemical oxide films produced in peroxide mixtures on Si(100) surfaces”, Thin Solid Films, vol. 476, issue 1, pp. 51-58, 2005.
    [35] S. P. Chang, R.W. Chuang, S. J. Chang, C. Y. Lu, Y. Z. Chiou, and S. F. Hsieh, “Surface HCl treatment in ZnO photoconductive sensors”, Thin Solid Films, vol. 517, issue 17, pp. 5050-5053, 2009.
    [36] J. P. Lin, and J. M. Wu, “The effects of annealing processes on electric properties of sol-gel derived Al-doped ZnO films”, Applied Physics Letters, vol. 92, pp. 134103, 2008.
    [37] S. H. Jeong, J. W. Lee, S. B. Lee, and J. H. Boo, “Deposition of aluminum-doped zinc oxide films by RF magnetron sputtering and study of their structural, electrical and optical properties”, Thin Solid Films, vol. 435,pp. 78-82, 2003.
    [38]W. T. Yen, Y. C. Lin, and J. H. Ke, “Surface textured ZnO:Al thin films by pulsed DC magnetron sputtering for thin film solar cells applications ”, Applied Surface Science, vol. 257, issue 3, pp. 960-968, 2010.
    [39] J. Mass, P. Bhattacharya, and R. S. Katiyar, “Effect of high substrate temperature on Al-doped ZnO thin films grown by pulsed laser deposition” , Materials Science and Engineering: B, vol. 103, issue 1, pp. 9-15, 2003.
    [40]N. Oyama, Y. Takanashi, S. Kaneko, K. Momiyama, K. Suzuki, and F. Hirose, “Pentacene/n--Si heterojunction diodes and photovoltaic devices investigated by I-V and C-V measurements”, Microelectronic Engineering , vol. 88, issue 9, pp. 2959-2963, 2011.
    [41] 劉傳璽,陳進來,「半導體物理元件與製程-理論與實務」,五南文化出版社,台北,2006。

    下載圖示
    QR CODE