簡易檢索 / 詳目顯示

研究生: 王孝文
Shiao-Wen Wang
論文名稱: 兩個TBP結合蛋白-HMGB1和p53參與聚麸醯胺擴增誘導的神經病變
Two TBP interacting proteins, HMGB1 and p53, are involved in polyQ induced neuropathies
指導教授: 蘇銘燦
Su, Ming-Tsan
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 68
中文關鍵詞: 聚麸醯胺脊髓小腦萎縮症第十七型
英文關鍵詞: HMGB1, p53, DSP1, polyQ, SCA17, TBP
論文種類: 學術論文
相關次數: 點閱:115下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 脊髓小腦萎縮症第十七型是由於 TATA-box binding protein (TBP) 基因外引子上CAG三核苷酸異常擴增所導致。TBP普遍且廣泛表現在所有型態的細胞,但其N端聚麸醯胺的擴增造成的病理徵狀卻只出現在小腦、皮質等中樞神經。前人的研究顯示人類High mobility group box 1 (HMGB1)和果蠅Dorsal switch protein 1 (DSP1) 在結構上有高度同源性,並且在RNA聚合酶II轉錄上扮演抑制子的角色。HMGB1和DSP1能夠直接和TBP的N端麸醯胺豐富的區域結合,並和結合在TBP上的DNA形成穩定的三元複合體,分別藉由干擾TFIIB和TFIIA與TBP結合,抑制RNA聚合酶II轉錄的啟始階段。本研究的主要目的,在SCA3、SCA17以及HD疾病的果蠅模式下,探討HMGB1和DSP1和聚麸醯胺擴增的蛋白質間交互作用。我們推測,突變的聚麸醯胺蛋白直接和HMGB1結合,並把HMGB1隔離在核內包涵體(intranuclear inclusions),而HMGB1的功能喪失,使得轉錄功能的喪失,使得活化轉錄功能的失調,導致細胞凋亡以及神經退化病徵。在研究中我們發現過度表現果蠅內生性DSP1干擾了正常的TBP的功能,而過度表現HMGB1則對TBP沒有影響,顯示DSP1和HMGB1雖然具有高度同源性,但在轉錄中扮演的角色不完全相同。另一方面,我們發現補充DSP1和HMGB1 可以顯著的減輕全長的TBP109Q,或是截斷型的聚麸醯胺蛋白如:TBP-109Q NTD、MJD-78Q和Htt-97Q所造成的神經退化。這意味著這些異常擴增的聚麸醯胺蛋白能夠直接與HMGB1作用,並將之隔離在蛋白質聚合體 (aggregates),而HMGB1喪失的功能可能是聚麸醯胺疾病的致病的普遍原因之一。同時過度表現DSP1和HMGB1增加了和變異的聚麸醯胺蛋白結合的機會,也減少了聚麸醯胺蛋白捕捉其他轉錄因子的數量,使得部分失調的轉錄功能可以恢復。

    Spinocerebellar ataxia type 17 (SCA17) is caused by expansion of CAG trinucleotide repeats in the exon TATA box-binding protein (TBP) gene. TBP is commonly and ubiquitously expressed in all cells of multiple cell organsisms due to its essential role in transcription. Nevertheless, the pathological phenotype, which resulted from mutant TBP, are mostly found in central nervous system (CNS), such as cerebellum and cortex. Previous studies showed that RNA polymerase II dependent transcriptional repressor, High mobility group box 1 (HMGB1), binds directly to polyQ rich domain of TBP and was sequested by expanded polyQ containing proteins, including HD and AT1, suggesting HMB box containing proteins play a role in polyQ mediated diseases. Additionally, p53 has also been shown to be a TBP binding protein and implicated in pathogenesis of SCA17 . Herein, we employed an established Drosophila model of SCA3, SCA17 and HD to investigate roles of two TBP interacting proteins HMGB1/DSP1 and p53 in the polyQ induced neurodgenerations. We find that loss of function of HMGB1 results in transcriptional dysfunction and leads to apoptosis and neurodegeneration. We further demostrate that overexpression of DSP1 but not HMGB1 in fly eyes interferes with wild-type and TBP54Q in significant level, suggesting different roles in transcription. On the other hand, complement of DSP1 and HMGB1 markedly ameliorates neurodegeneration caused by full-length TBP109Q and truncated polyQ protein, including TBP-109QNTD, MJD78Q, and Htt97Q. These data suggested that mutant polyQ proteins with expanded Q stretch directly interact with HMGB1 and sequestrate them into aggregates, increasing the possibility that HMGB1 loss of function involves in the pathologies of general polyQ protein diseases. In this study we showed that overexprssion of DSP1 and HMGB1 is likely to be a polyQ binding protein, and loss-of-function of DSP1/HMGB1 may play an important role in polyQ mediated diseases.

    中文摘要..........................................................................................2 Abstract …………………………………………………………..3 Introduction ……………………………………………………...5 Materials and Methods ………………………………………....15 Results……………………………………………………………18 Discussion………………………………………………………...28 References………………………………………………………...31 Figures…………………………………………………………….42 Supplementary Data……………………………………………..66

    1. Harding AE. Clinical features and classification of inherited ataxias. Advances in Neurology. 1993;61:1-14.

    2. Bürk K, Bösch S, Globas C, et al. Executive dysfunction in spinocerebellar ataxia type 1. Eur. Neurol. 2001;46(1):43-8.

    3. Tang B, Liu C, Shen L, et al. Frequency of SCA1, SCA2, SCA3/MJD, SCA6, SCA7, and DRPLA CAG trinucleotide repeat expansion in patients with hereditary spinocerebellar ataxia from Chinese kindreds. Arch. Neurol. 2000;57(4):540-4.

    4. O'Hearn E, Holmes SE, Calvert PC, Ross CA, Margolis RL. SCA-12: Tremor with cerebellar and cortical atrophy is associated with a CAG repeat expansion. Neurology. 2001;56(3):299-303.

    5. Nakamura K, Jeong S. [SCA17, a novel polyglutamine disease caused by the expansion of polyglutamine tracts in TATA-binding protein]. Rinsho Shinkeigaku. 2001;41(12):1123-5.

    6. Smith JK, Gonda VE, Malamud N. Unusual form of cerebellar ataxia; combined dentato-rubral and pallido-Luysian degeneration. Neurology. 1958;8(3):205-9.

    7. Bauer P, Laccone F, Rolfs A, et al. Trinucleotide repeat expansion in SCA17/TBP in white patients with Huntington's disease-like phenotype. J. Med. Genet. 2004;41(3):230-2.

    8. Margolis RL. The spinocerebellar ataxias: order emerges from chaos. Current Neurology and Neuroscience Reports. 2002;2(5):447-56.

    9. Zühlke C, Dalski A, Schwinger E, Finckh U. Spinocerebellar ataxia type 17: report of a family with reduced penetrance of an unstable Gln49 TBP allele, haplotype analysis supporting a founder effect for unstable alleles and comparative analysis of SCA17 genotypes. BMC Med. Genet. 2005;6:27.

    10. Tomiuk J, Bachmann L, Bauer C, et al. Repeat expansion in spinocerebellar ataxia type 17 alleles of the TATA-box binding protein gene: an evolutionary approach. Eur. J. Hum. Genet. 2007;15(1):81-7.

    11. Choudhry S, Mukerji M, Srivastava AK, Jain S, Brahmachari SK. CAG repeat instability at SCA2 locus: anchoring CAA interruptions and linked single nucleotide polymorphisms. Hum. Mol. Genet. 2001;10(21):2437-46.

    12. MacDonald ME, Ambrose CM, Duyao MP, et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell. 1993;72(6):971-983.

    13. Zühlke C, Hellenbroich Y, Dalski A, et al. Different types of repeat expansion in the TATA-binding protein gene are associated with a new form of inherited ataxia. Eur. J. Hum. Genet. 2001;9(3):160-4.

    14. Silveira I, Miranda C, Guimarães L, et al. Trinucleotide repeats in 202 families with ataxia: a small expanded (CAG)n allele at the SCA17 locus. Arch. Neurol. 2002;59(4):623-9.

    15. Koide R, Kobayashi S, Shimohata T, et al. A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum. Mol. Genet. 1999;8(11):2047-53.

    16. Toyoshima Y, Yamada M, Onodera O, et al. SCA17 homozygote showing Huntington's disease-like phenotype. Ann. Neurol. 2004;55(2):281-6.

    17. Friedman MJ, Wang C, Li X, Li S. Polyglutamine expansion reduces the association of TATA-binding protein with DNA and induces DNA binding-independent neurotoxicity. J. Biol. Chem. 2008;283(13):8283-90.

    18. Bruni AC, Takahashi-Fujigasaki J, Maltecca F, et al. Behavioral disorder, dementia, ataxia, and rigidity in a large family with TATA box-binding protein mutation. Arch. Neurol. 2004;61(8):1314-20.

    19. Lasek K, Lencer R, Gaser C, et al. Morphological basis for the spectrum of clinical deficits in spinocerebellar ataxia 17 (SCA17). Brain. 2006;129(Pt 9):2341-52.

    20. Rolfs A, Koeppen AH, Bauer I, et al. Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17). Ann. Neurol. 2003;54(3):367-75.

    21. Perez MK, Paulson HL, Pendse SJ, et al. Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. J. Cell Biol. 1998;143(6):1457-70.

    22. Davies SW, Beardsall K, Turmaine M, et al. Are neuronal intranuclear inclusions the common neuropathology of triplet-repeat disorders with polyglutamine-repeat expansions? Lancet. 1998;351(9096):131-3.

    23. Orr AL, Huang S, Roberts MA, et al. Sex-dependent effect of BAG1 in ameliorating motor deficits of Huntington disease transgenic mice. J Biol Chem. 2008;283(23):16027-36.

    24. Orr HT, Zoghbi HY. Trinucleotide repeat disorders. Annu. Rev. Neurosci. 2007;30:575-621.

    25. Schaffar G, Breuer P, Boteva R, et al. Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol Cell. 2004;15(1):95-105.

    26. DiFiglia M, Sapp E, Chase KO, et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science. 1997;277(5334):1990-3.

    27. Gutekunst CA, Li SH, Yi H, et al. Nuclear and neuropil aggregates in Huntington's disease: relationship to neuropathology. J Neurosci. 1999;19(7):2522-34.

    28. Bichelmeier U, Schmidt T, Hubener J, et al. Nuclear Localization of Ataxin-3 Is Required for the Manifestation of Symptoms in SCA3: In Vivo Evidence. J. Neurosci. 2007;27(28):7418-7428.

    29. Perez MK, Paulson HL, Pendse SJ, et al. Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. J. Cell Biol. 1998;143(6):1457-1470.

    30. Uchihara T, Fujigasaki H, Koyano S, et al. Non-expanded polyglutamine proteins in intranuclear inclusions of hereditary ataxias--triple-labeling immunofluorescence study. Acta Neuropathol. 2001;102(2):149-152.

    31. Huang CC, Faber PW, Persichetti F, et al. Amyloid formation by mutant huntingtin: threshold, progressivity and recruitment of normal polyglutamine proteins. Somat. Cell Mol. Genet. 1998;24(4):217-233.

    32. Bustin M, Lehn DA, Landsman D. Structural features of the HMG chromosomal proteins and their genes. Biochim Biophys Acta. 1990;1049(3):231-43.

    33. Hardman CH, Broadhurst RW, Raine AR, et al. Structure of the A-domain of HMG1 and its interaction with DNA as studied by heteronuclear three- and four-dimensional NMR spectroscopy. Biochemistry. 1995;34(51):16596-607.

    34. Agresti A, Bianchi ME. HMGB proteins and gene expression. Curr Opin Genet Dev. 2003;13(2):170-8.

    35. Landsman D, Bustin M. A signature for the HMG-1 box DNA-binding proteins. Bioessays. 1993;15(8):539-46.

    36. Bustin M, Reeves R. High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function. Prog Nucleic Acid Res Mol Biol. 1996;54:35-100.

    37. Bustin M. Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Mol. Cell. Biol. 1999;19(8):5237-46.

    38. Bianchi ME, Falciola L, Ferrari S, Lilley DM. The DNA binding site of HMG1 protein is composed of two similar segments (HMG boxes), both of which have counterparts in other eukaryotic regulatory proteins. EMBO J. 1992;11(3):1055-63.

    39. Love JJ, Li X, Case DA, et al. Structural basis for DNA bending by the architectural transcription factor LEF-1. Nature. 1995;376(6543):791-5.

    40. Werner MH, Huth JR, Gronenborn AM, Clore GM. Molecular basis of human 46X,Y sex reversal revealed from the three-dimensional solution structure of the human SRY-DNA complex. Cell. 1995;81(5):705-14.

    41. Grosschedl R, Giese K, Pagel J. HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet. 1994;10(3):94-100.

    42. Bianchi ME, Beltrame M, Paonessa G. Specific recognition of cruciform DNA by nuclear protein HMG1. Science. 1989;243(4894 Pt 1):1056-9.

    43. Locker D, Decoville M, Maurizot JC, Bianchi ME, Leng M. Interaction between cisplatin-modified DNA and the HMG boxes of HMG 1: DNase I footprinting and circular dichroism. J Mol Biol. 1995;246(2):243-7.

    44. Ferrari S, Harley VR, Pontiggia A, et al. SRY, like HMG1, recognizes sharp angles in DNA. EMBO J. 1992;11(12):4497-506.

    45. P-ohler JR, Norman DG, Bramham J, Bianchi ME, Lilley DM. HMG box proteins bind to four-way DNA junctions in their open conformation. EMBO J. 1998;17(3):817-26.

    46. Giese K, Cox J, Grosschedl R. The HMG domain of lymphoid enhancer factor 1 bends DNA and facilitates assembly of functional nucleoprotein structures. Cell. 1992;69(1):185-95.

    47. Pontiggia A, Rimini R, Harley VR, et al. Sex-reversing mutations affect the architecture of SRY-DNA complexes. EMBO J. 1994;13(24):6115-24.

    48. Boonyaratanakornkit V, Melvin V, Prendergast P, et al. High-mobility group chromatin proteins 1 and 2 functionally interact with steroid hormone receptors to enhance their DNA binding in vitro and transcriptional activity in mammalian cells. Mol Cell Biol. 1998;18(8):4471-87.

    49. Melvin VS, Roemer SC, Churchill MEA, Edwards DP. The C-terminal extension (CTE) of the nuclear hormone receptor DNA binding domain determines interactions and functional response to the HMGB-1/-2 co-regulatory proteins. J Biol Chem. 2002;277(28):25115-24.

    50. Melvin VS, Edwards DP. Coregulatory proteins in steroid hormone receptor action: the role of chromatin high mobility group proteins HMG-1 and -2. Steroids. 1999;64(9):576-86.

    51. Verrijdt G, Haelens A, Schoenmakers E, Rombauts W, Claessens F. Comparative analysis of the influence of the high-mobility group box 1 protein on DNA binding and transcriptional activation by the androgen, glucocorticoid, progesterone and mineralocorticoid receptors. Biochem J. 2002;361(Pt 1):97-103.

    52. Butteroni C, De Felici M, Schöler HR, Pesce M. Phage display screening reveals an association between germline-specific transcription factor Oct-4 and multiple cellular proteins. J. Mol. Biol. 2000;304(4):529-40.

    53. Zwilling S, König H, Wirth T. High mobility group protein 2 functionally interacts with the POU domains of octamer transcription factors. EMBO J. 1995;14(6):1198-208.

    54. Zappavigna V, Falciola L, Helmer-Citterich M, Mavilio F, Bianchi ME. HMG1 interacts with HOX proteins and enhances their DNA binding and transcriptional activation. EMBO J. 1996;15(18):4981-91.

    55. Jayaraman L, Moorthy NC, Murthy KG, et al. High mobility group protein-1 (HMG-1) is a unique activator of p53. Genes Dev. 1998;12(4):462-72.

    56. McKinney K, Prives C. Efficient specific DNA binding by p53 requires both its central and C-terminal domains as revealed by studies with high-mobility group 1 protein. Mol Cell Biol. 2002;22(19):6797-808.

    57. Stros M, Ozaki T, Bacikova A, Kageyama H, Nakagawara A. HMGB1 and HMGB2 cell-specifically down-regulate the p53- and p73-dependent sequence-specific transactivation from the human Bax gene promoter. J. Biol. Chem. 2002;277(9):7157-64.

    58. Brickman JM, Adam M, Ptashne M. Interactions between an HMG-1 protein and members of the Rel family. Proc. Natl. Acad. Sci. U.S.A. 1999;96(19):10679-83.

    59. Decoville M, Giraud-Panis MJ, Mosrin-Huaman C, Leng M, Locker D. HMG boxes of DSP1 protein interact with the rel homology domain of transcription factors. Nucleic Acids Res. 2000;28(2):454-62.

    60. Ellwood KB, Yen YM, Johnson RC, Carey M. Mechanism for specificity by HMG-1 in enhanceosome assembly. Mol Cell Biol. 2000;20(12):4359-70.

    61. Carrozza MJ, DeLuca N. The high mobility group protein 1 is a coactivator of herpes simplex virus ICP4 in vitro. J. Virol. 1998;72(8):6752-7.

    62. Ge H, Roeder RG. The high mobility group protein HMG1 can reversibly inhibit class II gene transcription by interaction with the TATA-binding protein. J. Biol. Chem. 1994;269(25):17136-40.

    63. Das D, Scovell WM. The binding interaction of HMG-1 with the TATA-binding protein/TATA complex. J. Biol. Chem. 2001;276(35):32597-605.

    64. Sutrias-Grau M, Bianchi ME, Bernués J. High mobility group protein 1 interacts specifically with the core domain of human TATA box-binding protein and interferes with transcription factor IIB within the pre-initiation complex. J. Biol. Chem. 1999;274(3):1628-34.

    65. Dasgupta A, Scovell WM. TFIIA abrogates the effects of inhibition by HMGB1 but not E1A during the early stages of assembly of the transcriptional preinitiation complex. Biochim. Biophys. Acta. 2003;1627(2-3):101-10.

    66. Qi M, Tagawa K, Enokido Y, et al. Proteome analysis of soluble nuclear proteins reveals that HMGB1/2 suppress genotoxic stress in polyglutamine diseases. Nat. Cell Biol. 2007;9(4):402-14.

    67. Lehming N, Thanos D, Brickman JM, et al. An HMG-like protein that can switch a transcriptional activator to a repressor. Nature. 1994;371(6493):175-9.

    68. Canaple L, Decoville M, Leng M, Locker D. The Drosophila DSP1 gene encoding an HMG 1-like protein: genomic organization, evolutionary conservation and expression. Gene. 1997;184(2):285-90.

    69. Mosrin-Huaman C, Canaple L, Locker D, Decoville M. DSP1 gene of Drosophila melanogaster encodes an HMG-domain protein that plays multiple roles in development. Dev Genet. 1998;23(4):324-34.

    70. Siebenlist U, Franzoso G, Brown K. Structure, regulation and function of NF-kappa B. Annu Rev Cell Biol. 1994;10:405-55.

    71. Steward R. Dorsal, an embryonic polarity gene in Drosophila, is homologous to the vertebrate proto-oncogene, c-rel. Science. 1987;238(4827):692-4.

    72. Gilmore TD, Koedood M, Piffat KA, White DW. Rel/NF-kappaB/IkappaB proteins and cancer. Oncogene. 1996;13(7):1367-78.

    73. Ip YT, Reach M, Engstrom Y, et al. Dif, a dorsal-related gene that mediates an immune response in Drosophila. Cell. 1993;75(4):753-63.

    74. Dushay MS, Asling B, Hultmark D. Origins of immunity: Relish, a compound Rel-like gene in the antibacterial defense of Drosophila. Proc Natl Acad Sci U S A. 1996;93(19):10343-7.

    75. Barillas-Mury C, Charlesworth A, Gross I, et al. Immune factor Gambif1, a new rel family member from the human malaria vector, Anopheles gambiae. EMBO J. 1996;15(17):4691-701.

    76. Lehming N, Le Saux A, Schüller J, Ptashne M. Chromatin components as part of a putative transcriptional repressing complex. Proc Natl Acad Sci U S A. 1998;95(13):7322-6.

    77. Kim LK, Choi UY, Cho HS, et al. Down-regulation of NF-kappaB target genes by the AP-1 and STAT complex during the innate immune response in Drosophila. PLoS Biol. 2007;5(9):e238.

    78. Kirov NC, Lieberman PM, Rushlow C. The transcriptional corepressor DSP1 inhibits activated transcription by disrupting TFIIA-TBP complex formation. EMBO J. 1996;15(24):7079-87.

    79. Johnson AD. The price of repression. Cell. 1995;81(5):655-8.

    80. Tyree CM, George CP, Lira-DeVito LM, et al. Identification of a minimal set of proteins that is sufficient for accurate initiation of transcription by RNA polymerase II. Genes Dev. 1993;7(7A):1254-65.

    81. Ozer J, Moore PA, Bolden AH, et al. Molecular cloning of the small (gamma) subunit of human TFIIA reveals functions critical for activated transcription. Genes Dev. 1994;8(19):2324-35.

    82. Stargell LA, Struhl K. The TBP-TFIIA interaction in the response to acidic activators in vivo. Science. 1995;269(5220):75-8.

    83. Sun X, Ma D, Sheldon M, Yeung K, Reinberg D. Reconstitution of human TFIIA activity from recombinant polypeptides: a role in TFIID-mediated transcription. Genes Dev. 1994;8(19):2336-48.

    84. Yokomori K, Zeidler MP, Chen JL, et al. Drosophila TFIIA directs cooperative DNA binding with TBP and mediates transcriptional activation. Genes Dev. 1994;8(19):2313-23.

    85. Goodrich JA, Tjian R. TBP-TAF complexes: selectivity factors for eukaryotic transcription. Curr Opin Cell Biol. 1994;6(3):403-9.

    86. Fields S, Jang SK. Presence of a potent transcription activating sequence in the p53 protein. Science. 1990;249(4972):1046-1049.

    87. Raycroft L, Wu HY, Lozano G. Transcriptional activation by wild-type but not transforming mutants of the p53 anti-oncogene. Science. 1990;249(4972):1049-1051.

    88. Vogelstein B, Kinzler KW. p53 function and dysfunction. Cell. 1992;70(4):523-526.

    89. Ginsberg D, Mechta F, Yaniv M, Oren M. Wild-type p53 can down-modulate the activity of various promoters. Proc. Natl. Acad. Sci. U.S.A. 1991;88(22):9979-9983.

    90. Mercer WE, Shields MT, Lin D, Appella E, Ullrich SJ. Growth suppression induced by wild-type p53 protein is accompanied by selective down-regulation of proliferating-cell nuclear antigen expression. Proc. Natl. Acad. Sci. U.S.A. 1991;88(5):1958-1962.

    91. Santhanam U, Ray A, Sehgal PB. Repression of the interleukin 6 gene promoter by p53 and the retinoblastoma susceptibility gene product. Proc. Natl. Acad. Sci. U.S.A. 1991;88(17):7605-7609.

    92. Seto E, Usheva A, Zambetti GP, et al. Wild-type p53 binds to the TATA-binding protein and represses transcription. Proc. Natl. Acad. Sci. U.S.A. 1992;89(24):12028-12032.

    93. Chin KV, Ueda K, Pastan I, Gottesman MM. Modulation of activity of the promoter of the human MDR1 gene by Ras and p53. Science. 1992;255(5043):459-462.

    94. Shiio Y, Yamamoto T, Yamaguchi N. Negative regulation of Rb expression by the p53 gene product. Proc. Natl. Acad. Sci. U.S.A. 1992;89(12):5206-5210.

    95. Martin DW, Subler MA, Muñoz RM, et al. p53 and SV40 T antigen bind to the same region overlapping the conserved domain of the TATA-binding protein. Biochem Biophys Res Commun. 1993;195(1):428-34.

    96. Liu X, Miller CW, Koeffler PH, Berk AJ. The p53 activation domain binds the TATA box-binding polypeptide in Holo-TFIID, and a neighboring p53 domain inhibits transcription. Mol. Cell. Biol. 1993;13(6):3291-3300.

    97. Truant R, Xiao H, Ingles CJ, Greenblatt J. Direct interaction between the transcriptional activation domain of human p53 and the TATA box-binding protein. J. Biol. Chem. 1993;268(4):2284-2287.

    98. Thut CJ, Chen JL, Klemm R, Tjian R. p53 transcriptional activation mediated by coactivators TAFII40 and TAFII60. Science. 1995;267(5194):100-104.

    99. Lu H, Levine AJ. Human TAFII31 protein is a transcriptional coactivator of the p53 protein. Proc. Natl. Acad. Sci. U.S.A. 1995;92(11):5154-5158.

    100. Farmer G, Friedlander P, Colgan J, Manley JL, Prives C. Transcriptional repression by p53 involves molecular interactions distinct from those with the TATA box binding protein. Nucleic Acids Res. 1996;24(21):4281-4288.

    101. Crighton D, Woiwode A, Zhang C, et al. p53 represses RNA polymerase III transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB. EMBO J. 2003;22(11):2810-2820.

    102. Ryan AB, Zeitlin SO, Scrable H. Genetic interaction between expanded murine Hdh alleles and p53 reveal deleterious effects of p53 on Huntington's disease pathogenesis. Neurobiol. Dis. 2006;24(2):419-427.

    103. Shahbazian MD, Orr HT, Zoghbi HY. Reduction of Purkinje cell pathology in SCA1 transgenic mice by p53 deletion. Neurobiol. Dis. 2001;8(6):974-981.

    下載圖示
    QR CODE