簡易檢索 / 詳目顯示

研究生: 戴順杰
Shuen-Chieh Dai
論文名稱: 金屬鄰羥苯雙希夫鹼苯甲酸之合成與鑑定及其在染料敏化太陽能電池之應用
Synthesis and Characterization of Metallosalophen and their Applications to Dye Sensitized Solar Cell
指導教授: 陳錦地
Chen, Chin-Ti
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 113
中文關鍵詞: 染料敏化太陽能電池希夫鹼
英文關鍵詞: Dye Sensitized Solar Cell, Schiff base
論文種類: 學術論文
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中合成四種化合物作為染料敏化太陽能電池之染料,分別為Ni-Salo、Pd-Salo、Mn-Salo及Cu-Salo,Salo為沙洛芬(salophen)之縮寫其化學名稱為N,N'-di(4-(diphenylamino)salicylidene)-3,4-
    diaminophenylenecarboxlicacid。此四種化合物製成元件之後,經量測並計算出能量轉換效率為0.244、1.763、0.060及0.168%,參考之N719元件之能量轉換效率約為7%,理論計算結果發現,HOMO的電子分佈會散佈於全分子,不完全集中於中心金屬與電子供給端(Donor) diphenylaminosalicylidene,LUMO電子密度分佈幾乎散佈於全分子,也不完全集中於二氧化鈦固定基(anchor group),使HOMO至LUMO電子轉移方向並未直接往二氧化鈦固定基,此為效率不及N719元件之第一主因。染料吸附於二氧化鈦上之吸收值受染料吸附量及染料消光係數影響,Pd-Salo之消光係數較其染料低,但吸附於二氧化鈦之光譜吸收值約與Ni-salo相當且大於其他染料,可推論其推論Pd-Salo之吸附量大於Ni-Salo、Mn-Salo及Cu-Salo,此吸附量趨勢與太陽能電池能量轉換效率趨勢成正比,為影響效率之第二主因。

    In this dissertation, we have synthesized and characterized four dyes for dye sensitized solar cell(DSSCs), Ni-Salo, Pd-Salo, Mn-Salo, Cu-Salo, where Salo is salophen, N,N'-di(4-(diphenylamino)salicylidene)
    -3,4- diaminophenylenecarboxlic acid. The power conversion efficiencies (ηs) of these solar cells are 0.244, 1.763, 0.060 and 0.168 % for Ni-Salo, Pd-Salo, Mn-Salo, and Cu-Salo, respectively. Herein, the reference η of N719 DSSCs is 7%. From time-dependent density functional theory calculations, we have found that the electronic distribution of HOMO for these dyes is not centered on the metal ion and electronic donor moiety, and LUMO electron density is not centered on anchoring group(or electronic acceptor moiety). That is the main reason of low ηs observed for these metallosalophen DSSCs. Compared with the absorbance of dye-loaded TiO2 and that of dyes in solution, we can conclude that Pd-Salo has the largest amount adsorbed on TiO¬2 film among four days. Therefore, the ηs of these dyes have a major influence from the amount of the dyes adsorbed on TiO2 film, which is the reason of ηs of Pd-salo DSSCs higher than these of Ni-Salo, Mn-Salo, and Cu-Salo ones.

    中文摘要....................................................................................................I 英文摘要...................................................................................................II 謝誌..........................................................................................................III 目錄...........................................................................................................V 圖目錄...................................................................................................VIII 表目錄.....................................................................................................XII 第一章 序論............................................................................................1 1-1太陽能電池簡介...............................................................................2 1-1-1 矽基半導體型太陽能電池………………………….………4 1-1-2 化合物太陽能電池………………………………….…...….5 1-1-3 有機材料型太陽能電池……………………………….……6 1-1-3-1 有機光伏打電池…………………………………..……6 1-1-3-2 染料敏化太陽能電池………………………………..…8 1-2 太陽光譜…………………………………………………...…..…9 1-3 太陽能電池元件數據量測…………………………...……….…11 1-3-1 能量轉換效率 (η) ………………………………...……….11 1-3-2 開路電壓(open circuit voltage,VOC)…………….……14 1-3-3 短路電流(short circuit current,ISC)……………...……14 1-3-4 填充因子 (fill factor,FF)…………………….……...……14 1-3-5 光電轉換效率 (IPCE) ……………………………….……15 1-4 染料敏化太陽能電池的組成及原理……………………...……17 1-4-1 染料敏化太陽能電池的組成………………………...……17 1-4-2 染料敏化太陽能電池原理…………………………...……18 1-5 染料敏化太陽能電池的元件細部探討…………..….…………22 1-5-1 電解質溶液………………………………..………….……22 1-5-2 半導體材料層……………………………………..….……28 1-5-3 染料……………………………………………..……….…30 1-5-3-1 釕(Ru)金屬錯合物染料………………………..….……35 1-5-3-2 有機染料……………………………………….…….…39 1-6 理論計算…………………………………………..………….…43 1-7 希夫鹼(Schiff base)及Salophen簡介……………………...……45 1-8 研究動機…………………………………………..…………….47 第二章 實驗………………………………………………….….……50 2-1 藥品…………………………………………………………...…50 2-2 儀器………………………………………………………...……52 2-3 合成步驟………………………………………………...….…...57 第三章 結果與討論………………………………….………….……65 3-1 光化學………………………………………………….……...…65 3-2 電化學………………………………………………….……...…81 3-3 染料敏化太陽能電池結果分析討論….………….…….….……86 3-4 理論計算…………………………………………….………...…92 第四章 結論…………………………………………….………...…112 參考文獻………………………………………………………………113 圖 目 錄 圖1-1-1,太陽能電池分類圖.....................................................................3 圖1-1-2,太陽能電池種類、材料及模組發電轉換效率 ......................3 圖1-1-3,有機光伏打電池發展類型........................................................6 圖1-2-1 太陽光譜圖……………………………………………………10 圖1-2-2,Air Mass 示意圖……………………………………….……..10 圖1-3-1,染料N719製成元件之IV curve………………………...……12 圖1-3-2,化合物N719(左)、C217(右)結構圖…………………………..13 圖1-3-3,染料C217 所製成元件之IV curve…………………….……..13 圖1-3-4,N719與N621之IPCE圖………………………………….……16 圖1-3-5,為N621結構圖…………………………………………….…..16 圖1-4-1,染料敏化太陽能電池(DSSCs)結構…………………...……17 圖1-4-2,電荷轉移路徑及所需時間…………………………...………19 圖1-4-3,電荷轉移路徑及所需時間分布圖…………………...………20 圖1-4-4,電荷轉移過程之簡圖………………………………...………20 圖1-5-1,Transient absorbance decay of K-19…………………….…… 22 圖1-5-2,染料K19之化合物結構圖…………………………….………23 圖1-5-3,染料K77於不同比例電解液及不同照光強度下之電流…….25 圖1-5-4,由左至右為K77、EMIB(CN)4、PMII及DMII化合物結構圖…25 圖1-5-5,固態染料敏化太陽能電池示意圖…………………...………26 圖1-5-6,AV-OM(左)、AV-DM(右)化合物結構圖…………….………27 圖1-5-7,TMEPA(左)、TEMPO(右)化合物結構圖…………………….27 圖1-5-8,以SEM 拍攝二氧化鈦顆粒圖………………………………29 圖1-5-9,半導體材料能帶分佈……………………………..………….29 圖1-5-10,電解質、二氧化鈦導帶、染料電位高低示意圖………….…30 圖1-5-11,化合物JK1、JK2 之吸收及放光光譜圖………………...…..31 圖1-5-12,化合物JK1、JK2 之IPCE 圖………………………...………32 圖1-5-13,為共吸附物結構圖…………………………….……………33 圖1-5-14,共染料SQ1及JK2之IPCE………………………...…………34 圖1-5-15,由左至右依序為化合物TT1、JK2及SQ1之結構圖…..…….34 圖1-5-16,Donor-π-Acceptor (D-π-A) 系統示意圖……………………39 圖1-5-17,C217結構及HOMO、LUMO分布圖………………………41 圖1-6-2,有機染料JK1之HOMO、LOMO圖……………………...……43 圖1-6-3,染料JK1經理論計算TDDFT電子躍遷之能量及其組成.…...44 圖1-7-1,希夫鹼及Salen、Salopen、Salcen及Salophen化合物結構圖…46 圖1-8-1,salen類型化合物之吸收光譜圖及化合物3a之結構…...……47 圖1-8-2,釕金屬錯合物染料C101及C102之吸收及放光光譜圖…..…48 圖1-8-3,有機染料C206、C211及C217之吸收光譜圖………………...48 圖1-8-4,具有推拉電子基salophen化合物簡圖………………….……49 圖3-1-1,各化合物之吸收光譜……………………...…………………66 圖3-1-2,Ni-Salo 之吸收光譜及消光係數回歸線………………..……67 圖3-1-3,Pd-Salo 之吸收光譜及消光係數回歸線…………..…………68 圖3-1-4,Cu-Salo 之吸收光譜及消光係數回歸線………….…………69 圖3-1-5,Mn-Salo 之吸收光譜及消光係數回歸線……………………70 圖3-1-6,H2salen 及Nisalen 吸收光譜圖……………………….………71 圖3-1-7,salen 及salophen 類型化合物結構及吸收光譜圖……...……72 圖3-1-8,salen 類型化合物結構及吸收光譜圖…………………..……73 圖3-1-9,salen 類型化合物結構圖…………………………..…………75 圖3-1-10,各染料吸附於二氧化鈦之吸收光譜圖……………….……76 圖3-1-11,Ni-Salo 溶液及與Ni-Salo-co 吸附於TiO2之吸收光譜圖….76 圖3-1-12,Pd-Salo 溶液及與Pd-Salo-co 吸附於TiO2之吸收光譜圖.…77 圖3-1-13,Mn-Salo 溶液及Mn-Salo 吸附於TiO2之吸收光譜圖……...77 圖3-1-14,Cu-Salo 溶液及Cu-Salo 吸附於TiO2之吸收光譜圖….……78 圖3-2-1,Ni-Salo、Pd-Salo、Cu-Salo 及Mn-Salo 之CV 圖譜…………84 圖3-2-2,Ni-Salo、Pd-Salo、Cu-Salo 及Mn-Salo 之DPV圖譜…………84 圖3-2-3,Ni-Salo、Pd-Salo、Cu-Salo 及Mn-Salo 之SWV 圖譜………84 圖3-2-4,為各化合物CV、DPV及SWV電位圖示………………….…86 圖3-3-1,化合物之光電流電壓圖譜…………………………...………87 圖3-3-2,化合物之IPCE 圖譜………………………….………………87 表 目 錄 表1-5-1,共染料SQ1及JK2之元件數據………………..………………34 表1-5-2,釕金屬錯合物結構及元件數據……………………………...38 表1-5-3,有機染料結構及元件數據………………………...…………41 表1-8-1,Ni-salen及Ni-salophen吸收波長數據…………………..……49 表2-1-1,使用之化合物列表………………………………...…………50 表3-1-1,化合物的各吸收波峰與消光係數…………………...………75 表3-1-2 染料於之消光係數、於二氧化鈦之吸收值及相對吸附量..…82 表3-1-3 染料於之消光係數、於二氧化鈦之吸收值及相對吸附量…..82 表3-2-1,Ni-Salo、Pd-Salo、Cu-Salo 及Mn-Salo 之電化學數據….……85 表3-3-1,染料敏化太陽能電池元件量測數據…………………...……88 表3-4-1,Ni-Salo、Pd-Salo、Cu-Salo 及Salo 分子最佳化後俯視及側 視圖………………………………………..…………………94 表3-4-2,Ni-Salo、Pd-Salo 及Cu-Salo 鍵長及鍵角與Salo 雙面角…….95 表3-4-3,染料中心金屬電子所佔之比例 (%)………………...………95 表3-4-4,Ni-Salo 之6-31G* + LANL2DZ分子軌域模擬圖………...…97 表3-4-5,Pd-Salo 之6-31G* + LANL2DZ 分子軌域模擬圖…..………98 表3-4-6,Cu-Salo 之6-31G* + LANL2DZ 分子軌域模擬圖…………..99 表3-4-7,Salo 之6-31G* + LANL2DZ 分子軌域圖…………..………100 表3-4-8,染料C217 分子軌域圖……………………………….……101 表3-4-9,染料C101 分子軌域圖…………………………….………102 表3-4-10,Ni-Salo 之TDDFT 計算各Singlet states (S1,S2 ..)躍遷結 果........................................................................................104 表3-4-11,Pd-Salo 之TDDFT 計算各Singlet states (S1,S2 ..)躍遷結 果…………………………………………………………106 表3-4-12,Cu-Salo 之TDDFT 計算各Singlet states (S1,S2 ..)躍遷結 果………………………………………………………....108 表3-4-13,Salo 之TDDFT 計算各Singlet states (S1,S2 ..)躍遷結 果………………………………………………………....110

    1. A. E. Becquerel, Acad. Sci. 1839, 9, 145.
    2. M. Grätzel, Nature 2000, 403, 363.
    3. 黄建昇, 工業材料雜誌, 2003, 150.
    4. 台電月刊, 536期, 11
    5. K. M. Coakley, M. D. McGehee, Chem. Mater. 2004, 16, 4533.
    6. G. Oster, J. S. Bellin, R. W. Kimball, M. E. Schrader, J. Am. Chem. Soc. 1959, 81,
    5095.
    7. S. Chaberek, A. Shepp, R. J. Allen, J. Phys. Chem. 1965, 69, 641.
    8. S. Chaberek, A. Shepp, R. J. Allen, J. Phys. Chem. 1965, 69, 647.
    9. S. Chaberek, A. Shepp, R. J. Allen, J. Phys. Chem. 1965, 69, 2834.
    10. S. Chaberek, A. Shepp, R. J. Allen, J. Phys. Chem. 1965, 69, 2842.
    11. D. R. Kearns, R. A. Hollins, A. U. Khan, P.. Radlick, J. Am. Chem. Soc. 1967, 89,
    5456.
    12. D. R. Kearns, R. A. Hollins, A. U. Khan, R. W. Chambers, P. Radlick, J. Am.
    Chem. Soc. 1967, 89, 5455.
    13. H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya, Nature 1976, 261, 402.
    14. B. O Reagen, M. Grätzel, Nature 1991, 353, 737.
    15. M. K. Nazeeruddin, A. Kay, Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska, N.
    Vlachopoulos, M. Grätzel, J. Am. Chem. Soc. 1993, 115, 6382.
    16. M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S.
    Ito, B. Takeru, M. Grätzel, J. Am. Chem. Soc. 2005, 127, 16835.
    17. M. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, L. Spiccia, G. B.
    Deacon, C. A. Bignozzi, M. Grätzel, J. Am. Chem. Soc. 2001, 123, 1613.
    18. http://rredc.nrel.gov/solar/standards/am1.5/ASTMG173.JPG
    19. http://www.newport.com images/webclickthru-EN/images/1067.gif
    20. G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu, P. Wang, Chem. Commun.
    2009, 2198.
    21. M. Grätzel, Inorg. Chem. 2005, 44, 6841.
    22. A. B. F. Martinson, T. W. Hamann, M. J. Pellin, J. T. Hupp, Chem. Eur. J. 2008,
    14, 4458.
    23. D. Kuang, S. Ito, B. Wenger, C. Klein, J. Moser, Ro. Humphry-Baker, S. M.
    Zakeeruddin, M. Grätzel, J. Am. Chem. Soc. 2006, 128, 4146.
    24. F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. Humphry-Baker, P. Wang,
    S. M. Zakeeruddin, M. Grätzel, J. Am. Chem. Soc. 2008, 130, 10720.
    25. D. K., P. Wang, Seigo Ito, Shaik. M. Zakeeruddin, M. Grätzel, J. Am. Chem. Soc.
    2006, 128, 7732.
    128
    26. S. Kim, J. K. Lee, S. O. Kang, J. Ko, J. H. Yum, F. D. Angelis, D. D. Censo, Md.
    K. Nazeeruddin, M. Grätzel, J. Am. Chem. Soc. 2006, 128, 16701.
    27. U. Bach, D. Lupo, P. Comte, J. E. Moser, F.Weissörtel, J. Salbeck, H. Spreitzer, M.
    Grätzel, Nature 1998, 395, 583.
    28. F. Fabregat-Santiago, J. Bisquert, L. Cevey, P. Chen, M. Wang, S. M. Zakeeruddin,
    M. Grätzel, J. Am. Chem. Soc. 2009, 131, 558.
    29. L. Schmidt-Mende , M. Grätzel, Thin Solid Films 2006, 500, 296.
    30. H. J. Snaith, S. M. Zakeeruddin, Q. Wang, P. Péchy, M. Grätzel, Nano Lett. 2006
    6, 2000.
    31. Z. Zhang, P. Chen, T. N. Murakami, S. M. Zakeeruddin, M. Grätzel, Adv. Funct.
    Mater. 2008, 18, 341.
    32. M. Grätzel, J. Photochem. Photobiol. A 2004, 164, 3.
    33. M. Grätzel, Nature 2001, 414, 338.
    34. Z. S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Coord. Chem. Rev. 2004, 248,
    1381.
    35. E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, J. R. Durrant, J. Am. Chem. Soc.
    2003, 125, 475.
    36. J. N. Clifford, E. Palomares, Md. K. Nazeeruddin, R. Thampi, M. Grätzel, J. R.
    Durrant, J. Am. Chem. Soc. 2004, 126, 5670.
    37. R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H.
    Arakawa, M. Tachiya, J. Phys. Chem. B 2004, 108, 4818.
    38. P. Wang, C. Klein, J. Moser, R. Humphry-Baker, N. Cevey-Ha, R. Charvet, P.
    Comte, S. M. Zakeeruddin, M. Grätzel, J. Phys. Chem. B 2004, 108, 17553.
    39. Z. S. Wang, F. Y. Li, C. H. Huang, Chem. Commun. 2000, 2063.
    40. N. R. Neale, N. Kopidakis, J. Lagemaat, M. Grätzell, A. J. Frank, J. Phys. Chem.
    B 2005, 109, 23183.
    41. J. Yum, P. Walter, S. Huber, D. Rentsch, T. Geiger, F. Nüesch, F. D. Angelis, M.
    Grätzel, M. K. Nazeeruddin, J. Am. Chem. Soc. 2007, 129, 10320.
    42. Z. Zhang, N. Evans, S. M. Zakeeruddin, R. Humphry-Baker, M. Grätzel, J. Phys.
    Chem. C 2007, 111, 398.
    43. P. Wang, S. M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-Baker, M.
    Grätzel, J. Phys. Chem. B 2003, 107, 14336.
    44. N. Robertson, Angew. Chem. Int. Ed. 2008, 47, 1012.
    45. J. H. Yum, S. R. Jang, P. Walter, T. Geiger, F. Nüesch, S. Kim, J. Ko, M. Grätzel,
    M. K. Nazeeruddin, Chem. Commun. 2007, 4680.
    46. C. Klein, Md. K. Nazeeruddin, P. Liska, Davide Di Censo, N. Hirata, E.
    Palomares, J. R. Durrant, M. Grätzel, Inorg. Chem. 2005, 44, 178.
    47. F. Gao, Y. Wang, J. Zhang, D. Shi, M. Wang, R. Humphry-Baker, P. Wang, S. M.
    129
    Zakeeruddin, M. Grätzel, Chem. Commun. 2008, 2635.
    48. C. Y. Chen, J. G. Chen, S. J. Wu, J. Y. Li, C. G. Wu, K. C. Ho, Angew. Chem. Int.
    Ed. 2008, 47, 7342.
    49. P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin, M. Grätzel, J. Am.
    Chem. Soc. 2005, 127, 808.
    50. C. Y. Chen, S. J. Wu, J. Y. Li, C. G. Wu, J. G. Chen, K. C. Ho, Adv. Mater. 2007,
    19, 3888.
    51. D. Kuang, C. Klein, H. J. Snaith, R. Humphry-Baker, S. M. Zakeeruddin, M.
    Grätzel, Inorg. Chim. Acta 2008, 361, 699.
    52. T. Bessho, E. Yoneda, J. Yum, M. Guglielmi, I. Tavernelli, H. Imai, U.
    Rothlisberger, M. Nazeeruddin, M. Grätzel, J. Am. Chem. Soc. 2009, 131, 5930.
    53. A. Mishra, M. K. R. Fischer, P. Buerle, Angew. Chem. Int. Ed. 2009, 48, 2474.
    54. D. P. Hagberg, J. Yum, H. Lee, K. M. Karlsson, R. Humphry-Baker, L. Sun, A.
    Hagfeldt, M. Grätzel, Md. K. Nazeeruddin, J. Am. Chem. Soc. 2008, 130, 6259.
    55. K. Hara, M. Kurashige, S. Ito, A. Shinpo, S. Suga, K. Sayama, H. Arakawa, Chem.
    Commun. 2003, 252.
    56. Z. Wang, Y.Cui, Y. Dan-oh, C. Kasada, A. Shinpo, K. Hara, J. Phys. Chem. C
    2007, 111, 7224.
    57. S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Péchy,
    M. Grätzel, Chem. Commun. 2008, 5194.
    58. Y. S. Yen, Y. C. Hsu, J. T. Lin, C. W. Chang, C. P. Hsu, D. J. Yin, J. Phys. Chem.
    C 2008, 112, 12557.
    59. K. R. Justin Thomas, Y. C. Hsu, J. T. Lin, K. M. Lee, K. C. Ho, C. H. Lai, Y. M.
    Cheng, P. T. Chou, Chem. Mater. 2008, 20, 1830.
    60. C. Y. Chen, J. G. Chen, S. J. Wu, J. Y. Li, C. G. Wu, K. C. Ho, Angew. Chem. Int.
    Ed. 2008, 47, 7342.
    61. H. Schiff, Ann. Chem. Suppl. 1864, 3, 343.
    62. H. Schiff, Ann. Chem. 1869, 150, 193.
    63. H. Schiff, Ann. Chem. 1869, 151, 186.
    64. P. Pfeiffer, E. Breith, E. Lubbe, T. Tsumaki, L. Justus, Ann. Chem. 1933, 503, 84.
    65. E. N. Jacobsen, W. Zhang, A. R. Muci, J. R. Ecker, L. Deng, J. Am. Chem. Soc.
    1991, 113, 7063.
    66. E. N. Jacobsen, W. Zhang, M. L. Giiler, J. Am. Chem. Soc. 1991, 113, 6703.
    67. K. B. Hansen, J. L. Leighton, E. N. Jacobsen, J. Am. Chem. Soc. 1996, 118,
    10924.
    68. M. H. Wu, E. N. Jacobsen, Tetrahedron Lett. 1997, 38, 1693.
    69. K. J. O’Connor, S. J. Wey, C. J. Burrows, Tetrahedron Lett. 1992, 33, 1001.
    70. T. Fukuda, T. Katsuki, Synlett, 1995, 825.
    130
    71. T. Katsuki, Chem. Soc. Rev. 2004, 33, 437.
    72. P. G. Lacroix, Eur. J. Inorg. Chem. 2001, 339.
    73. S. D. Bella, Chem. Soc. Rev., 2001, 30, 355.
    74. T. Okadaa, N. Arimura, C. Ono, M. Yuasa, Electrochim. Acta 2005, 51, 1130.
    75. S. J. Wezenberg, G. A. Metselaar, E. Escudero-Adán, J. Benet-Buchholz, A. W.
    Kleij, Inorg. Chim. Acta 2009, 362, 1053.
    76. M. Nielsen, N. B. Larsen, K. V. Gothelf, Langmuir 2002, 18, 2795.
    77. T. Sano, Y. Nishio, Y. Hamada, H. Takahashi, T. Usuki, K. Shibata, J. Mater.
    Chem. 2000, 10, 157.
    78. S. Yamada, Coord. Chem. Rev. 1999, 190-192, 537.
    79. L. Canali, D. C. Sherrington, Chem. Soc. Rev. 1999, 28, 85.
    80. M. Kojima, H. Taguchi, M. Tsuchimoto, K. Nakajima, Coord. Chem. Rev. 2003,
    237, 183.
    81. M. Bandini, P. G. Cozzi, A. Umani-Ronchi, Chem. Commun. 2002, 919.
    82. Y Shimazaki, T. Yajima, F.o Tani, S. Karasawa, K. Fukui, Y. Naruta, O. Yamauchi,
    J. Am. Chem. Soc. 2007, 129, 2559.
    83. W. H. Leung, E. Y. Y. Chan, E. K. F. Chow, I. D. Williams, S. M. Peng, J. Chem.
    Soc., Dalton Trans, 1996, 1229.
    84. D. A. Atwood, M. J. Harvey, Chem. Rev. 2001, 101, 37.
    85. R. Kitaura, G. Onoyama, H. Sakamoto, R. Matsuda, S. Noro, S. Kitagawa,
    Angew. Chem. Int. Ed. 2004, 43, 2684.
    86. S. D. Bella, I. Fragala, I. Ledoux, M. A. Diaz-Garcia, T. J. Marks, J. Am. Chem.
    Soc. 1997, 119, 9550.
    87. T. Glaser, M. Heidemeier, T. Lügger, Dalton Trans. 2003, 2381.
    88. F. Averseng, P. G. Lacroix, I. Malfant, G. Lenoble, P. Cassoux, Chem. Mater. 1999,
    11, 995.
    89. C. Klein, M. K. Nazeeruddin, D. Censo, P. Liska, M. Grätzel, Inorg. Chem. 2004,
    43, 4216.
    90. S. L. Li, K. J. Jiang, K. F. Shao, L. M. Yang, Chem. Commun. 2006, 2792.

    無法下載圖示 本全文未授權公開
    QR CODE