簡易檢索 / 詳目顯示

研究生: 游岳寧
Yueh-Ning Yu
論文名稱: Pt(1R, 2R-dach)22+與DNA結合之序列偏好
Sequence preferences of Pt(1R, 2R-dach)22+
指導教授: 黃文彰
Huang, Wen-Chang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 67
中文關鍵詞: DNA結合Pt(1R, 2R-dach)22+順鉑
英文關鍵詞: DNA binding, Pt(1R, 2R-dach)22+, cisplatin
論文種類: 學術論文
相關次數: 點閱:47下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係針對 cis-Pt(NH3)2Cl2 (cisplatin) 的衍生物, Pt(1R, 2R-dach)22+ (dach:diaminocyclohexane) ,探討其與cisplatin 反應途徑之異同,與反應條件及序列之偏好。
    經由與cisplatin相同條件實驗結果,顯示 Pt(1R, 2R-dach)22+ 不會如 cisplatin 之反應途徑,與 DNA 產生 cis-GG 的交聯鍵結反應。
    根據 UV 及 CD 升溫圖譜研究顯示 Pt(1R, 2R-dach)22+ 可與 AT-rich 之 DNA 序列產生溝槽結合反應。反應條件溫度需 40℃ ,
    Pt(1R, 2R-dach)22+:DNA則需在 30:1 以上,為本實驗可產生反應之必要條件。
    由本實驗 10 條 DNA 序列之 UV 及 CD 升溫圖譜分析,Pt(1R, 2R-dach)22+ 對含單結合位置的 DNA 序列,其結合強度皆不強,而對含雙結合位置的 DNA 序列則都近乎完全反應,推測d(CXXCGXXG)2 及d(CXXCCGGXXG)2 (X=A或T) 為 Pt(1R, 2R-dach)22+ 偏好之 DNA 序列特徵,為至少 2 組連續 A 或 T 的鹼基對,此協同性結合(cooperative binding) 為正協同作用 (positive cooperativity)。

    This investigation was carried out via a cis-Pt(NH3)2Cl2 (cisplatin) derivative, Pt(1R, 2R-dach)22+ (dach:diaminocyclohexane), and focused on the different reaction pathways, reaction conditions and sequence preferences between cisplatin and Pt(1R, 2R-dach)22+.
    Under the same experiment conditions as cisplatin, the results suggested Pt(1R, 2R-dach)22+ do not follow the same mechanism as cisplatin, in forming cis-GG crosslink with DNA.
    Based on variable temperature UV and CD denaturation analysis, Pt(1R, 2R-dach)22+ can react with AT-rich DNA sequences through groove binding. Based on experiments carried out under various conditions, suggested that reaction temperature about 40℃ and Pt(1R, 2R-dach)22+:DNA over 30:1 were required to promote the reaction.
    Refer to UV and CD denaturation experiment of ten DNA samples of variable sequences in this work, Pt(1R, 2R-dach)22+ has only weak binding affinity to single binding site sequences, whereas double binding site sequences react almost completely with Pt(1R, 2R-dach)22+. The variable sequence studies suggested that the consensus sequences of Pt(1R, 2R-dach)22+-DNA sites are d(CXXCGXXG)2 and d(CXXCCGGXXG)2 (X=A or T) with at least 2 base pairs of A or T.

    目錄 I 表目錄 IV 圖目錄 V 中文摘要 VIII 英文摘要 IX 第一章 緒論 1 1.1 Cisplatin 2 1.2 Oxaliplatin 4 1.3 Groove binding Pt complex 5 第二章 儀器原理與實驗方法 9 2.1 儀器設備原理 9 2.1.1 紫外/可見光光譜(ultraviolet-visible spectroscopy) 9 2.1.2 圓二偏極化光譜(circular dichroism spectroscopy) 10 2.1.3 分子模擬(molecular modeling) 12 2.2 實驗方法及步驟 15  2.2.1 緩衝液(buffer)部分 15  2.2.2 DNA部分 15  2.2.3 單股DNA濃度測定 15 2.2.4 製備雙股DNA–退火(annealing) 16  2.2.5 藥品部分 16  2.2.6 Cisplatin與DNA形成adduct 16  2.2.7 Pt(dach)2Cl2與DNA形成adduct 17  2.2.8 紫外/可見光光譜升溫實驗 18  2.2.9 圓二偏極化光譜升溫實驗 19  2.2.10 UV圖譜處理 19  2.2.11 CD圖譜處理 22  2.2.12 分子模擬 22 第三章 實驗結果與討論 25 3.1 Cisplatin-GG共價鍵結 25 3.2 Pt(dach)22+ 構型分析 29  3.2.1 溶劑為DMSO 29  3.2.2 溶劑為純水及前述緩衝液 31 3.3 單binding site反應 39  3.3.1 d(CGATCG)2 39  3.3.2 d(CAATTG)2 41 3.4 雙Binding site長度效應 42  3.4.1 d(CAATCGTTAG)2 42  3.4.2 d(CAACGTTG)2 44  3.4.3 d(CCACGTGG)2 46 3.5 雙binding site溫度效應 47 3.6 雙binding site濃度效應 49 3.7 改變雙binding site鹼基順序 51  3.7.1 d(CTTCGAAG)2 52  3.7.2 d(CATCGATG)2 53  3.7.3 d(CTACGTAG)2 54 3.8 改變雙binding site相鄰鹼基 56  3.8.1 d(CAACCGGTTG)2 56 3.9 分子模擬 58 第四章 結論 63 參考文獻 66

    蔡惠如,國立台灣師範大學化學研究所(民95)
    Jung, Y.; Lippard, S. J. Chem. Rev. 2007, Vol. 107, No. 5, 1387-1407.
    Wong, E.; Giandomenico, C. M. Chem. Rev. 1999, 99, 2451-2466.
    Takahara, P. M.; Frederick, C. A.; Lippard, S. J. J. Am. chem. Soc. 1996, 118, 12309-12321.
    Jamieson, E. R.; Lippard, S. J. Chem. Rev. 1999, 99, 2467-2498.
    Bernges, F.; Holler E. Nucleic Acids Res. 1991, Vol. 19, No. 7, 1483-1489.
    Yang, D.; Wang, A. H.-J. Prog. Biophys. molec. Biol. 1996, Vol. 66, No. 1, 81-111.
    Pendyala, L.; Kidani, Y.; Perez, R.; Wilkes, J.; Bemacki, R. J.; Creaven, P. J. Cancer Letters 1995, 97, 117-184.
    Drew, H. D. K. J. Chem. Soc. 1932, 2328-2331.
    Franklin, C. A.; Fry, J. V.; Collins, J. G. J. Inorg. Biochem. 1996, 35, 7541-7545.
    Fede, A.; Labhardt, A.; Bannwarth, W.; Leupin, W. Biochem. 1991, 30, 11377-11388.
    Watts, C. R.; Kerwin, S. M.; Kenyon, G. L.; Kuntz, I. D.; Kallick, D. A. J. Am. Chem. Soc. 1995, 117, 9941-9950.
    Wheat, N. J.; Collins, J. G. J. Inorg. Biochem. 2000, 78, 313-320.
    Nelson, D. L.; Cox, M. M. (2004) Lehninger: Principles of Biochemistry (Fourth Ed.) W. H. Freeman and Company, New York, chapter 8.
    Fasman, G. D. (1975) CRC Handbook of Biochemistry and Molecular Biology (Third Ed.), chapter I, P.589.
    Baleja, J. D.; Pon, R. T.; Sykes, B. D. Biochemistry 1990, 29, 4828-4839.
    Eyring, H.; Liu, H.-C.; Caldwell, D. Chem. Rev. 1968, 68, 525-540.
    Shi, S.; Yan, L.; Yang, Y.; Fisher-Shaulsky, J.; Thacher, T. J. Comput.Chem. 2003, Vol. 24, No. 9, 1059-1076.
    Mergny, J.-L.; Lacroix, L. Oligonucleotides 2003, 13, 515-537.
    Poklar, N.; Pilch, D. S.; Lippard, S. J.; Redding, E. A.; Dunham, S. U.; Breslauer, K. J. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 7606-7611.
    Nina, B.; Koji, N,; Robert, W. W. (2000) Circular Dichroism Principles and Applications (Second Ed.), P.707.

    下載圖示
    QR CODE