簡易檢索 / 詳目顯示

研究生: 王世宏
Wang, Shih-Hong
論文名稱: 肝醣合成激酶-3β抑制劑設計/搜尋之嵌合計算研究
Design/Discovery of GSK-3β Inhibitors Using Docking Computation
指導教授: 孫英傑
Sun, Ying-Chieh
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 101
中文關鍵詞: 肝醣合成激酶-3β癌症嵌合研究
英文關鍵詞: GSK-3β, cancer, docking
論文種類: 學術論文
相關次數: 點閱:130下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • GSK-3β為一蛋白質激酶,在生物體中的作用與許多疾病諸如癌症、阿滋海默症以及糖尿病等息息相關。在本研究中,我們利用分子嵌合計算來研究GSK-3β抑制劑。
    對於GSK-3β抑制劑的研究,Staurosporine(STU)是已被發現具有良好抑制效果化合物。在我們研究中,首先檢視兩STU相似結構化合物Bis-3與Bis-8,我們的計算結果顯示Bis-8評分值優於Bis-3,與實驗相符,凡得瓦作用力為主要貢獻者。在結合模式上,那些與實驗結構類似之構型--單五環與GSK-3β鉸鏈片段位置有氫鍵作用--是具有較高親和力之構型。我們分析∕討論此兩化合物及相關化合物結合模式的原理。此外,活性位置中結晶水,對於嵌合結果的影響,亦予以分析∕討論。
    此外,為了搜尋其他結構類之GSK-3β抑制劑,我們以rule of five規則,篩選美國國家癌症研究所化學資料庫中24,535個分子。進行高速篩選前,我們以25個已知實驗IC50分子作測試,結果顯示所選之評分函數所得之值與實驗數值具有良好的相關性,顯示此評分函數之適用性。我們討論數種具有較佳親合力化合物與GSK-3β之間的作用及其結合模式構型。這些計算結果將有助於實驗學家設計與搜尋GSK-3β抑制劑。

    GSK-3β is a kinase protein that plays significant role in a number of biochemical reaction networks associated with diseases, including cancers, Alzheimer disease, and diabetics. In the present study, we used docking computation to aid in design and discovery of GSK-3β inhibitors.
    In the development of GSK-3β inhibitors, the natural compound, Staurosporine(STU), has drawn much attention due to its strong inhibition effect. In the first part of this study, we used docking computation to investigate binding modes and affinities of several STU-like ligands and related ligands binding with GSK-3β. The computed results of two examined STU-like ligands, Bis-3 and Bis-8, showed that Bis-8 binds stronger than Bis-3, in accord with experimental results. Van der Waals interaction is the major contributor to the larger binding affinity of Bis-8. The binding modes with the classical hydrogen bondings of STU-like ligands with the hinge loop of GSK-3β were found to be among the binding modes of higher affinity. The binding principles of these two ligands with other examined ligands were examined. The effect of crystal water molecules in the docking calculation was examined and discussed.
    To further aid in developing GSK-3β inhibitors, we carried out high-throughput virtual screening for 24,535 compounds in the National Cancer Institute(NCI, USA)database which were selected based on the rules of five of drug compounds. Docking for 25 ligands with available experimental IC50 values were examined first. The computed scores are in good correlation with the IC50 values, showing feasibility of the chosen scoring function for docking for GSK3β. Binding affinities and modes of several top-ranked ligands were analyzed and discussed. These computed results should be useful for experimentalists in design/discovery of GSK-3β inhibitors.

    第一章 緒論 1-1 前言 1-2 蛋白質激酶訊息傳導(Kinase signaling transduction)與肝醣合成激酶-3(Glycogen synthase kinase-3,GSK-3β)及癌症(Cancer) 1-3 Wnt/β-catenin訊息傳導途徑(Signaling pathway) 1-4 GSK-3β及其抑制劑 1-5 分子嵌合(Docking) 1-6 研究目標 第二章 理論與方法 2-1 GOLD 2-2 評分函數(Scoring Function) 2-2-1 凡得瓦作用力 2-2-2 氫鍵作用力 2-2-3 Torsional Strain Energy 2-2-4 水分子作用 2-3 遺傳演算法 2-4 計算之前置處理與分子嵌合參數設定 2-5 化學資料庫分子資料篩選 2-6 分析方法 2-7 GSK-3β-小分子複合體已知實驗3D結構之再現 第三章 計算結果與討論 3-1 GSK-3β與Bis-3及Bis-8化合物嵌合結果 3-1-1 GSK-3β與Bis-3 3D結合模式 3-1-2 GSK-3β與Bis-8 3D結合模式 3-2 MD運算後活性位置水分子分佈分析 3-2-1 Bis-3結合模式MD運算水分子分佈 3-2-2 Bis-8結合模式MD運算水分子分佈 3-3 25個已知IC50實驗值結構評分值結果 3-4 高速虛擬篩選NCI化學資料庫分子結果 3-4-1 NCI篩選結果之結合模式 第四章 結論 參考文獻

    1. Congreve, M.; Murray, C. W.; Blundell, T. L., Keynote review: Structural biology and drug discovery. Drug Discovery Today 2005, 10 (13), 895-907.
    2. Charifson, P. S.; I. D. Kuntz, Practical Application of Computer-Aided Drug Design. 1997, p. 1.
    3. Kubinyi, H.; Folkers, G.; Martin, Y. C., 3D QSAR in Drug Design. 1998.
    4. Essex, J. W.; Taylor, R. D.; Jewsbury, P. J., A review of protein-small molecule docking methods. Journal of Computer-Aided Molecular Design 2002, 16, 151-166.
    5. Klebe, G., Virtual ligand screening: strategies, perspectives and limitations. Drug Discovery Today 2006, 11 (13-14), 580-594.
    6. Verdonk, M. L.; Berdini, V.; Hartshorn, M. J.; Mooij, W. T. M.; Murray, C. W.; Taylor, R. D.; Watson, P., Virtual Screening Using Protein−Ligand Docking:  Avoiding Artificial Enrichment. Journal of Chemical Information and Computer Sciences 2004, 44 (3), 793-806.
    7. Eccleston, A., Signal in Cancer. Nature 2006, 441 (7092), 423.
    8. Benson, J. D.; Chen, Y.-N. P.; Cornell-Kennon, S. A.; Dorsch, M.; Kim, S.; Leszczyniecka, M.; Sellers, W. R.; Lengauer, C., Validating cancer drug targets. Nature 2006, 441, 451-456.
    9. Sebolt-Leopold, J. S.; English, J. M., Mechanisms of drug inhibition of signalling molecules. Nature 2006, 441, 457-462.
    10. Zhang, J.; Yang, P. L.; Gray, N. S., Targeting cancer with small molecule kinase inhibitors. Nature 2009, 9, 28-39.
    11. Woodgett, J. R., MOLECULAR-CLONING AND EXPRESSION OF GLYCOGEN-SYNTHASE KINASE-3 FACTOR-A. Embo J. 1990, 9 (8), 2431-2438.
    12. Woodgett, J. R., CDNA CLONING AND PROPERTIES OF GLYCOGEN-SYNTHASE KINASE-3. Method Enzymol. 1991, 200, 564-577.
    13. Cohen, P.; Frame, S., The renaissance of GSK3. Nat Rev Mol Cell Biol. 2001, 2, 769-776.
    14. Cross, D. A. E.; Alessi, D. R.; Cohen, P.; Andjelkovich, M.; Hemmings, B. A., Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995, 378, 785-789.
    15. Eldar-Finkelman, H., Glycogen synthase kinase 3: an emerging therapeutic target. TRENDS in Molecular Medicine 2002, 8 (3), 126-132.
    16. Hotamisligil, G. S.; Peraldi, P.; Budavari, A.; Ellis, R.; White, M. F.; Spiegelman, B. M., IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 1996, 271 (5249), 665-668.
    17. Tanti, J. F.; Gremeaux, T.; Vanobberghen, E.; Lemarchandbrustel, Y., SERINE/THREONINE PHOSPHORYLATION OF INSULIN-RECEPTOR SUBSTRATE-1 MODULATES INSULIN-RECEPTOR SIGNALING. J. Biol. Chem. 1994, 269 (8), 6051-6057.
    18. Phiel, C. J.; Klein, P. S., Molecular targets of lithium action. Annu. Rev. Pharmacol. Toxicol. 2001, 41, 789-813.
    19. Martinez, A.; Castro, A.; Dorronsoro, I.; Alonso, M., Glycogen synthase kinase 3 (GSK-3) inhibitors as new promising drugs for diabetes, neurodegeneration, cancer, and inflammation. Medicinal Research Reviews 2002, 22 (4), 373-384.
    20. Hoeflich, K. P.; Luo, J.; Rubie, E. A.; Tsao, M. S.; Jin, O.; Woodgett, J. R., Requirement for glycogen synthase kinase-3 beta in cell survival and NF-kappa B activation. Nature 2000, 406 (6791), 86-90.
    21. Kinzler, K. W.; Vogelstein, B., Lessons from hereditary colorectal cancer. Cell 1996, 87 (2), 159-170.
    22. Takashima, A., Drug Development Targeting the Glycogen Synthase Kinase-3β (GSK-3β)-Mediated Signal Transduction Pathway:Role of GSK-3β in Adult Brain. Journal of Pharmacological Sciences 2009, 109, 174-178.
    23. Akiyama, T., Wnt/[beta]-catenin signaling. Cytokine & Growth Factor Reviews 2000, 11 (4), 273-282.
    24. Willert, K.; Jones, K. A., Wnt signaling: is the party in the nucleus? Genes & Development 2006, 20 (11), 1394-1404.
    25. Gregorieff, A.; Clevers, H., Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes & Development 2005, 19 (8), 877-890.
    26. Dajani, R.; Fraser, E.; Roe, S. M.; Young, N.; Good, V.; Dale, T. C.; Pearl, L. H., Crystal Structure of Glycogen Synthase Kinase 3[beta]: Structural Basis for Phosphate-Primed Substrate Specificity and Autoinhibition. Cell 2001, 105 (6), 721-732.
    27. Engler, T. A.; Henry, J. R.; Malhotra, S.; Cunningham, B.; Furness, K.; Brozinick, J.; Burkholder, T. P.; Clay, M. P.; Clayton, J.; Diefenbacher, C.; Hawkins, E.; Iversen, P. W.; Li, Y. H.; Lindstrom, T. D.; Marquart, A. L.; McLean, J.; Mendel, D.; Misener, E.; Briere, D.; O'Toole, J. C.; Porter, W. J.; Queener, S.; Reel, J. K.; Owens, R. A.; Brier, R. A.; Eessalu, T. E.; Wagner, J. R.; Campbell, R. M.; Vaughn, R., Substituted 3-imidazo[1,2-a]pyridin-3-yl-4-(1,2,3,4-tetrahydro-[1,4]diazepino[6,7,1- hi]indol-7-yl)pyrrole-2,5-diones as highly selective and potent inhibitors of glycogen synthase kinase-3. Journal of Medicinal Chemistry 2004, 47 (16), 3934-3937.
    28. Maeda, Y.; Nakano, M.; Sato, H.; Miyazaki, Y.; Schweiker, S. L.; Smith, J. L.; Truesdale, A. T., 4-Acylamino-6-arylfuro[2,3-d]pyrimidines: potent and selective glycogen synthase kinase-3 inhibitors. Bioorg. Med. Chem. Lett. 2004, 14 (15), 3907-3911.
    29. Floquet, N.; Richez, C.; Durand, P.; Maigret, B.; Badet, B.; Badet-Denisot, M. A., Discovering new inhibitors of bacterial glucosamine-6P synthase (GlmS) by docking simulations. Bioorg. Med. Chem. Lett. 2007, 17 (7), 1966-1970.
    30. Kozikowski, A. P.; Gaisina, I. N.; Yuan, H.; Petukhov, P. A.; Blond, S. Y.; Fedolak, A.; Caldarone, B.; McGonigle, P., Structure-based design leads to the identification of lithium mimetics that block mania-like effects in rodents. Possible new GSK-3 beta therapies for bipolar disorders. J. Am. Chem. Soc. 2007, 129 (26), 8328-8332.
    31. Vougogiannopoulou, K.; Ferandin, Y.; Bettayeb, K.; Myrianthopoulos, V.; Lozach, O.; Fan, Y.; Johnson, C. H.; Magiatis, P.; Skaltsounis, A. L.; Mikros, E.; Meijer, L., Soluble 3 ',6-Substituted Indirubins with Enhanced Selectivity toward Glycogen Synthase Kinase-3 Alter Circadian Period. Journal of Medicinal Chemistry 2008, 51 (20), 6421-6431.
    32. Tavares, F. X.; Boucheron, J. A.; Dickerson, S. H.; Griffin, R. J.; Preugschat, F.; Thomson, S. A.; Wang, T. Y.; Zhou, H.-Q., N-Phenyl-4-pyrazolo[1,5-b]pyridazin-3-ylpyrimidin-2-amines as Potent and Selective Inhibitors of Glycogen Synthase Kinase 3 with Good Cellular Efficacy. Journal of Medicinal Chemistry 2004, 47 (19), 4716-4730.
    33. Leost, M.; Schultz, C.; Link, A.; Wu, Y. Z.; Biernat, J.; Mandelkow, E. M.; Bibb, J. A.; Snyder, G. L.; Greengard, P.; Zaharevitz, D. W.; Gussio, R.; Senderowicz, A. M.; Sausville, E. A.; Kunick, C.; Meijer, L., Paullones are potent inhibitors of glycogen synthase kinase-3 beta and cyclin-dependent kinase 5/p25. European Journal of Biochemistry 2000, 267 (19), 5983-5994.
    34. Mettey, Y.; Gompel, M.; Thomas, V.; Garnier, M.; Leost, M.; Ceballos-Picot, I.; Noble, M.; Endicott, J.; Vierfond, J. M.; Meijer, L., Aloisines, a new family of CDK/GSK-3 inhibitors. SAR study, crystal structure in complex with CDK2, enzyme selectivity, and cellular effects. Journal of Medicinal Chemistry 2003, 46 (2), 222-236.
    35. Peat, A. J.; Boucheron, J. A.; Dickerson, S. H.; Garrido, D.; Mills, W.; Peckham, J.; Preugschat, F.; Smalley, T.; Schweiker, S. L.; Wilson, J. R.; Wang, T. Y.; Zhou, H. Q. Q.; Thomson, S. A., Novel pyrazolopyrimidine derivatives as GSK-3 inhibitors. Bioorg. Med. Chem. Lett. 2004, 14 (9), 2121-2125.
    36. Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J., Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry 1998, 19 (14), 1639-1662.
    37. Makino, S.; Kuntz, I. D., Automated flexible ligand docking method and its application for database search. Journal of Computational Chemistry 1997, 18 (14), 1812-1825.
    38. Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G., A fast flexible docking method using an incremental construction algorithm. Journal of Molecular Biology 1996, 261 (3), 470-489.
    39. Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R., Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology 1997, 267 (3), 727-748.
    40. Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; Shaw, D. E.; Francis, P.; Shenkin, P. S., Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry 2004, 47 (7), 1739-1749.
    41. Abagyan, R.; Totrov, M.; Kuznetsov, D., ICM - A NEW METHOD FOR PROTEIN MODELING AND DESIGN - APPLICATIONS TO DOCKING AND STRUCTURE PREDICTION FROM THE DISTORTED NATIVE CONFORMATION. Journal of Computational Chemistry 1994, 15 (5), 488-506.
    42. Christopher S. Page, P. A. B., Can MM-PBSA calculations predict the specificities of protein kinase inhibitors? Journal of Computational Chemistry 2006, 27 (16), 1990-2007.
    43. Luo, R.; David, L.; Gilson, M. K., Accelerated Poisson-Boltzmann calculations for static and dynamic systems. Journal of Computational Chemistry 2002, 23 (13), 1244-1253.
    44. http://129.43.27.140/ncidb2/, National Cancer Institute Database.
    45. Lovell, S. C.; Word, J. M.; Richardson, J. S.; Richardson, D. C., The penultimate rotamer library. Proteins 2000, 40 (3), 389-408.
    46. Schlessinger, A.; Rost, B., Protein flexibility and rigidity predicted from sequence. Proteins-Structure Function and Bioinformatics 2005, 61 (1), 115-126.
    47. Verdonk, M. L.; Chessari, G.; Cole, J. C.; Hartshorn, M. J.; Murray, C. W.; Nissink, J. W. M.; Taylor, R. D.; Taylor, R., Modeling water molecules in protein-ligand docking using GOLD. Journal of Medicinal Chemistry 2005, 48 (20), 6504-6515.
    48. Cole, J. C.; Murray, C. W.; Nissink, J. W. M.; Taylor, R. D.; Taylor, R., Comparing protein-ligand docking programs is difficult. Proteins-Structure Function and Bioinformatics 2005, 60 (3), 325-332.
    49. Eldridge, M. D.; Murray, C. W.; Auton, T. R.; Paolini, G. V.; Mee, R. P., Empirical scoring functions .1. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Journal of Computer-Aided Molecular Design 1997, 11 (5), 425-445.
    50. Baxter, C. A.; Murray, C. W.; Clark, D. E.; Westhead, D. R.; Eldridge, M. D., Flexible docking using Tabu search and an empirical estimate of binding affinity. Proteins 1998, 33 (3), 367-382.
    51. Mooij, W. T. M.; Verdonk, M. L., General and targeted statistical potentials for protein-ligand interactions. Proteins-Structure Function and Bioinformatics 2005, 61 (2), 272-287.
    52. Jones, G.; Willett, P.; Glen, R. C., MOLECULAR RECOGNITION OF RECEPTOR-SITES USING A GENETIC ALGORITHM WITH A DESCRIPTION OF DESOLVATION. Journal of Molecular Biology 1995, 245 (1), 43-53.
    53. Holland, J. H., Adaptation in Natural and Artificial Systems 1975.
    54. http://www.iem.bham.ac.uk/environmental/sharifi.htm, genetic algorithm procedures
    55. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23 (1-3), 3-25.
    56. Bertrand, J. A.; Thieffine, S.; Vulpetti, A.; Cristiani, C.; Valsasina, B.; Knapp, S.; Kalisz, H. M.; Flocco, M., Structural characterization of the GSK-3 beta active site using selective and non-selective ATP-mimetic inhibitors. Journal of Molecular Biology 2003, 333 (2), 393-407.
    57. Davies, S. P.; Reddy, H.; Caivano, M.; Cohen, P., Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 2000, 351 (1), 95-105.
    58. Komander, D.; Kular, G. S.; Schuttelkopf, A. W.; Deak, M.; Prakash, K. R. C.; Bain, J.; Elliott, M.; Garrido-Franco, M.; Kozikowski, A. P.; Alessi, D. R.; Van Aalten, D. M. F., Interactions of LY333531 and other bisindolyl maleimide inhibitors with PDK1. Structure 2004, 12 (2), 215-226.

    無法下載圖示 本全文未授權公開
    QR CODE