簡易檢索 / 詳目顯示

研究生: 陳柏村
論文名稱: 導電高分子與氮化鎵奈米線應用於光伏效應之研究
指導教授: 陳家俊
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 88
中文關鍵詞: 氮化鎵太陽能電池奈米線
論文種類: 學術論文
相關次數: 點閱:197下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們企圖使用奈米管、奈米線或是奈米柱和共軛高分子混摻用來製作有機/無機混摻太陽能電池藉以提高電子在材料上的遷移率及電荷收集效率。我們將Thermal-CVD成長的氮化鎵奈米線和具規則性的聚3-己烷噻吩(P3HT)混摻置成薄膜,從拉曼光譜中我們看見氮化鎵奈米線和聚3-己烷噻吩 (P3HT) 在表面上可能有作用而使得聚3-己烷噻吩(P3HT)的特徵峰值及強度改變,另外在室溫的光激螢光光譜中可以看峰值紅移,可能是因為氮化鎵奈米線表面的孤對電子推擠聚3-己烷噻吩(P3HT)上的π電子及硫上的孤對電子造成聚3-己烷噻吩(P3HT)的排列較鬆散所致。我們設計氮化鎵奈米線混摻聚3-己烷噻吩(P3HT)的有機/無機太陽能電池其元件表現會受到濃度、膜厚及退火等影響,目前效率大約0.015%、開路電壓約為950mV、短路電流約為0.05 mA/cm2。

    The nanorods, nanowire, nanotube and nanotips are mixed with the conjugated polymer to fabricate the organic-inorganic polymer solar cell in order to improve the carrier mobility and collection efficiency. The n-type GaN nanowires grown by thermal-CVD enveloped by a thin layer of the regioregular poly(3-hexylthiophene) (rrP3HT). Raman studies several the characteristics of GaN nanowires and rrP3HT with surface interaction. The room temperature PL spectrum displays redshift caused by that GaN nanowires make stacking loose of rrP3HT. The GaN nanowires/rrP3HT hybrid solar cell was fabricated with the efficiency around 0.015%, Voc ~950 mV and Jsc ~0.05 mA/cm2. The device performance is affected by the GaN nanowires’ concentration, active layer thickness and annealing process.

    內容 第一章 簡介 1 1.1 研究背景 1 1.1.1 太陽電池產業發展 1 1.1.2 有機太陽能電池 4 1.1.2.1小分子太陽電池 (molecular solar cells) 5 1.1.2.2染料感光太陽電池 (dye-sensitized solar cells, DSC) 5 1.1.2.3高分子太陽電池 (polymer solar cells, plastic solar cells) 6 1.2 研究動機 9 1.2.1 有機高分子太陽電池的優點 9 1.2.2有機與與無機混合有機高分子太陽電池 10 第二章 材料特性與原理 11 2.1太陽能電池元件簡介 11 2.1.1太陽能電池原理簡介 11 2.1.2 太陽電池發電的機制 12 2.1.3、太陽電池等效電路及操作 14 2.1.4、太陽電池基本參數 17 2.2 導電高分子(Conducting polymer) 20 2.2.1 導電高分子簡介 20 2.2.2導電高分子的理論 21 2.2.3 聚(3-烷基噻吩) (Poly(3-hexylthiophene-2,5-diyl)) 24 2.2.3.1 聚(3-烷基噻吩)簡介 24 2.2.3.2 聚(3-烷基噻吩)的結構 25 2.2.3.3聚(3-烷基噻吩)的結晶性與表面間的關係 27 2.3氮化鎵奈米線簡介 29 2.3.1氮化鎵奈米線 29 第三章 實驗方法 31 3.1實驗藥品 31 3.2實驗儀器 32 3.2.1 製程儀器 32 3.2.1.1 蒸鍍系統(Thermal Evaporation) 32 3.2.1.2 手套箱(Glove Box) 33 3.2.1.3 點膠機與UV膠 34 3.2.1.4 UV燈 35 3.2.2 量測儀器 36 3.2.2.1 光電流量測系統 36 3.2.2.2 光激螢光光譜量測系統(Photoluminescence:PL) 37 3.2.2.4 UV/VIS/NIR Spectrophotometer 39 3.2.2.5 拉曼振動光譜儀(Raman spectrum Raman Spectrophotometer) 40 3.2.2.6 X光繞射分析儀(X ray diffraction Spectrometer, XRD) 41 3.2.2.7 SEM 42 3.2.2.8 化學分析電子光譜(Electron Spectroscopy for Chemical Analysis , ESCA) 44 3.3實驗步驟 45 3.3.1氮化鎵的備置 45 3.3.2樣品製作及量測 46 3.3.2.1溶液的配置 46 3.2.2.2元件製程 46 3.3表面修飾 47 第四章 結果與討論 48 4.1氮化鎵奈米線的合成 48 4.2 P3HT/氮化鎵奈米線之光電元件 51 4.2.1直接成長基板上的元件 51 4.2.2 P3HT/GaN NW BHJ元件 54 4.2.3 光學量測 59 4.2.3.1 拉曼(Raman)光譜 59 4.2.3.2 UV-VIS 61 4.2.3.3光激螢光光譜 62 4.2.3.4 XRD 63 4.2.4總結 64 4.3表面改質 65 4.3.1 IR 66 4.3.1 XPS 67 4.3.3元件表現 71 第五章 總結與未來規劃 73

    參考文獻
    1 D. M. Chapin, C. S. Fuller, and G.L. Pearson, “A New Silicon pn Junction Photocell for Converting Solar Radiation into Electrical Power,” J. Appl. Phys. 25,676 (1954).
    2 J. Zhao, A. Wang, and M. A. Green, “24.5% efficiency silicon PERT cells on MCZsubstrates and 24.7% efficiency PERL cells on FZ substrates,” Prog. Photovolt. : Res.Appl. 7, 471 (1999).
    3 R. McConnell, S. Kurtz, M. Symko-Davies, “Concentrator Photovoltaic Technologies”, Refocus. July/August (2005).
    4 C. W. Tang, “Two-layer organic photovoltaic cell”, Appl. Phys. Lett. 48, 183(1986)
    5 B. O’Regan, M. A. Grätzel, “A low cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature 353, 737 (1991)
    6 G. Li, V. Shrotriya, J. Huang, Y. Yao, Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”, Nature Mater. 4, 864, (2005)
    7 K. M. Coakley,Wudl and M. D. McGehee,“Conjugated polymer photovoltaiccells," Chem. Mater. 16, 4533 (2004)
    8 W. U. Huynh, X. G. Peng, A. P. Alivisatos, “CdSe Nanocrystal Rods Poly(3-hexylthiophene) Composite Photovoltaic Devices”, Adv. Mater. 1999,11, 11, 923 (1999)

    9 W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, “Hybrid Nanorod-Polymer SolarCells”, Science 295, 2425 (2002)
    10 C. Goh, S. R. Scully,M.D. McGehee, “Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells” J. Appl. Phys. 101, 114503 (2007)
    11 C. W. Chen, W. F. Su “Improved performance of polymer/TiO2 nanorod bulk heterojunctionphotovoltaic devices by interface modification “ Appl Phy Lett 92, 053312 (2008)
    12 S. M. Sze, “Physics of Semiconductor Devices”, 2nd Edition
    13 S. R. Forrest MRS Bull. 2005, 30(Jan), 28
    14 J. Chem. Soc., Chem.Commun., 578, 1977
    15 G. Grosso, R.Farchioni, Organic electronic materials:conjugatedpolymers and low molecular weight organic solidsSpringer,2001
    16 T. Yamamoto, K. Sanechika, and A. Yamam m. Sci. Polym. Lett.Ed., 18 (1980)
    17 J. W. P. Lin, L. P. Dudek, and J. Polym. Sci. Polym. Chem. Ed., 18
    18 K. Y. Jen, R. Oboodi, R. L. Elsenbaumer, Polym. Mater. Sci.Eng. 1985, 53, 79
    19 M. Sato & H. Morii ,Polym. Commun. ,32 ,42 (1991)
    20 Christoph J. Brabec et al., Adv. Funct. Mater. 15, 1193, 2005
    21 D. H. Kim, etc, Langmuir, 21, 3203 2005
    22 W. C. Johnson, J. B. Parsons, and M. C. Crew, “Nitrogencompound of gallium. I, II,”, J. Phys. Chem. Vol.36, 2588 (1932)
    23 H. P. Maraska, D. A. Stevenson, and J. I. Pankove, “Violetluminescence of Mg – doped GaN+”, Appl. Phys. Lett. Vol.22, 303(1973)
    24 H. Amano, N. Sawaki, I. Askasi, and Y. Toyoda, “Metalorganicvapor phase epitaxial growth of high quality GaN film using anAlN buffer layer”, Appl. Phys. Lett. Vol.48, 353 (1986)
    25 H. Morkoc, “Nitride semiconductors and devices.” (1999)
    26 A. Rubio, J. L. Corkill, M. L. Cohen, E. L. Shirley, and S. G. Louie,“Quasiparticle band structure of AlN and GaN”, Phys. Rev. B
    27 M.W.Lee, H.Z.Twu, C.-C.Chen, and C.-H.Chen, Appl. Phys. Lett. 79, 3693.(2001)
    28 M.W.Lee, H.C.Hsueh, H.-M.Lin, and C.-C.Chen, Phys. Rev. B. 67, 161309.(2003)
    29 Gang Li and Y. YANG,”High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends” Nature materials, 4, 864, (2005)
    30 Gerald F. Malgas and Franscious R. Cummings “Interfacial analysis and properties of regioregular poly(3-hexylthiophene) spin-coated on an indium tin oxide-coated glass substrate” J. Mater. Sci. 43, 5599–5604 (2008)
    31 R. O sterbacka, and C. P. An “Two-Dimensional Electronic Excitations in Self-Assembled Conjugated Polymer Nanocrystals” Science 287, 839 (2000)
    32 Christoph J. Brabec et al., Adv. Funct. Mater. 15, 1193, 2005
    33 D. H. Kim, etc, Langmuir, 21, 3203 2005
    34 D. H. Kim, etc, Adv. Funct. Mater. 15, 77 2005
    35 Alex K.-Y. Jen et al “Polymer Solar Cells That Use Self-Assembled-Monolayer-Modified ZnO/Metals as Cathodes” Adv. Mater.20, 2376–2382 (2008)
    36 Kim et al. “Photochemical Functionalization of Gallium Nitride Thin Films with Molecular and Biomolecular Layers “Langmuir, Vol. 22, No. 19, 2006
    37 Ito et al. “Self-Assembled Monolayers of Alkylphosphonic Acid on GaNSubstrates” Langmuir, Vol. 24, No. 13, 2008
    39 Arranz et al. “Influence of Surface Hydroxylation on 3-AminopropyltriethoxysilaneGrowth Mode during Chemical Functionalization of GaN Surfaces: An Angle-Resolved X-ray Photoelectron Spectroscopy Study” Langmuir, Vol. 24, No. 16, 2008

    無法下載圖示 本全文未授權公開
    QR CODE