簡易檢索 / 詳目顯示

研究生: 蕭全佑
Hsiow, Chuen-Yo
論文名稱: 金(I)催化進行分子內克來森類型重排反應合成含氮及含氧螺旋化合物
指導教授: 葉名倉
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 91
中文關鍵詞: 金銀共催化含氮螺旋含氧螺旋克來森類型重排反應
論文種類: 學術論文
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 含氮螺旋及含氧螺旋化合物不論是在天然物或是藥物方面均佔有非常重要的地位。本文探討利用金(I)催化含氮炔基之環己烯醇化合物,進行分子內克來森類型重排反應合成含氮螺旋化合物。
    3-(溴甲基)環己-2-烯酮與4-甲基-N-(丙-2-炔)苯磺醯胺衍生物在鹼性條件下反應,得到含氮炔基支鏈的環己烯酮化合物。接著將環己烯炔酮化合物用硼氫化鈉還原成環己烯炔醇化合物,而得到環化起始物。
    將含氮炔基之環己烯醇化合物利用金(I)陽離子催化進行分子內克來森類型重排反應得到一組含氮螺旋非鏡像異構物。透過X-ray繞射分析證明此一組非鏡像異構物之個別的相對立體結構。進一步將環化產物經由氫化反應、氧化反應可得到單一化合物。

    Both azaspiro and oxaspiro units play important roles in natural products and medicine. In this thesis we report that gold(I)-catalyzed intramolecular Claisen-type rearrangement of starting material produced azaspiro compounds.
    Reaction of 3-(bromomethyl)cyclohex-2-enone and 4-methyl-N-(prop- -2-ynyl)benzenesulfonamide derivatives provided cyclohexenones bearing a propagyl aza-tether at C-3 under basic condition. The resulting enones were reduced to give the starting materials.
    Treatment of starting materials with a catalytic amount of Ph3PAuCl/ AgOTf produced a mixture of diastereomers. The relative stereochemistry of both isomers were confirmed by X-ray diffraction analysis. The mixture of diastereomers was reduced by H2 and a catalytic amount of Pd/C followed by oxidation of the resulting alcohol to ketone to give a single azaspiro compound. The stereochemistry of the saturated azaspiro compound was established by X-ray diffraction analysis.

    目錄 i 中文摘要 ii 英文摘要 iii 第一章 緒論 1 第二章 金(I)催化含氮及含氧螺旋化合物之合成反應 7 2.1 前言 7 2.2 實驗設計與概念 23 2.3 實驗結果與討論 28 2.3.1 合環起始物的製備 28 2.3.2 含氮及含氧螺旋化合物的合成與環化條件最佳化 37 2.3.3 化學反應機制探討 41 2.3.4 環化產物化學結構鑑定 42 2.4 結論 54 第三章 實驗部分 55 3.1 分析儀器及基本實驗操作 55 3.2 金(I)催化含氮及含氧螺旋化合物之合成反應 57 3.2.1 一般實驗程序 57 3.2.2 帶含氮炔基支鏈及含氧炔基支鏈之環己烯醇化合物的製備 62 3.2.3 含氮螺旋化合物及含氧螺旋化合物之合成 77 參考文獻 91 附錄

    參考文獻
    1. Ovens, C.; Martin, N. G.; Procter, D. J. Org. Lett. 2008, 10, 1441–1444.
    2. Bartolomé, C.; Ramiro, Z.; Pérez-Galán, P.; Bour, C.; Raducan, M.; Echavarren, A. M.; Espinet, P. Inorg. Chem. 2008, 47, 11391–11397.
    3. Cabello, N.; Jiménez-Núñez, E.; Buñel, E.; Cárdenas, D. J.; Echavarren, A. M. Eur. J. Org. Chem. 2007, 2007, 4217–4223.
    4. Belting, V.; Krause, N. Org. Lett. 2006, 8, 4489–4492.
    5. Ibarra-Rivera, T. R.; Gámez-Montaño, R.; Miranda, L. D. Chem. Commun. 2007, 38, 3485–3487.
    6. Blay, G.; Cardona, L.; Collado, A. M.; García, B.; Pedro, J. R. J. Org. Chem. 2006, 71, 4929–4936.
    7. Wardrop, D. J.; Burge, M. S.; Zhang, W.; Ortı́z, J. A. Tetrahedron Lett. 2003, 44, 2587–2591.
    8. Pigge, F. C.; Coniglio, J. J.; Dalvi, R. J. Am. Chem. Soc. 2006, 128, 3498–3499.
    9. Srikrishna, A.; Viswajanani, R.; Sattigeri, J. A. J. Chem. Soc. Chem. Commun. 1995, 469–470.
    10. Antonio J. Herrera, M. R. a. E. S. J. Org. Chem. 2008, 73, 3384–3391.
    11. Wilson, M. S.; Padwa, A. J. Org. Chem. 2008, 73, 9601–9609.
    12. Coote, S. C.; Moore, S. P.; O’Brien, P.; Whitwood, A. C.; Gilday, J. J. Org. Chem. 2008, 73, 7852–7855.
    13. Kraft, P.; Popaj, K. Eur. J. Org. Chem. 2008, 2008, 261–268.
    14. Tang, B.-X.; Tang, D.-J.; Tang, S.; Yu, Q.-F.; Zhang, Y.-H.; Liang, Y.; Zhong, P.; Li, J.-H. Org. Lett. 2008, 10, 1063–1066.
    15. Bryans, J. S.; Horwell, D. C.; Ratcliffe, G. S.; Receveur, J.-M.; Rubin, J. R. Biorg. Med. Chem. 1999, 7, 715–721.
    16. Kim, G.; Kim, J. H.; Lee, K. Y. J. Org. Chem. 2006, 70, 2185–2187.
    17. Harrison, T. J.; Patrick, B. O.; Dake, G. R. Org. Lett. 2007, 9, 367–370.
    18. Basavaiah, D.; Reddy, K. R. Org. Lett. 2007, 9, 57–60.
    19. Chen, I.-H.; Oisaki, K.; Kanai, M.; Shibasaki, M. Org. Lett. 2008, 10, 5151–5154.
    20. Hatano, M.; Mikami, K. J. Am. Chem. Soc. 2003, 125, 4704–4705.
    21. Yamaura, Y.; Hyakutake, M.; Mori, M. J. Am. Chem. Soc. 1997, 119, 7615–7616.
    22. Guazzelli, G.; Duffy, L. A.; Procter, D. J. Org. Lett. 2008, 10, 4291–4294.
    23. Istrate, F. M.; Gagosz, F. Org. Lett. 2007, 9, 3181–3184.
    24. Baskar, B.; Bae, H. J.; An, S. E.; Cheong, J. Y.; Rhee, Y. H.; Duschek, A.; Kirsch, S. F. Org. Lett. 2008, 10, 2605–2607.
    25. Agosti, A.; Britto, S.; Renaud, P. Org. Lett. 2008, 10, 1417–1420.
    26. Sun, J.; Conley, M. P.; Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc. 2006, 128, 9705–9710.
    27. 王妍蓉, 國立台灣師範大學化學所, 碩士論文, 2007
    28. Wege, P. M.; Clark, R. D.; Heathcock, C. H. J. Org. Chem. 1976, 41, 3144–3148.
    29. Lee, S. I.; Park, S. Y.; Park, J. H.; Jung, I. G.; Choi, S. Y.; Chung, Y. K.; Lee, B. Y. J. Org. Chem. 2006, 71, 91–96.
    30. More, J. D.; Finney, N. S. Org. Lett. 2002, 4, 3001–3003.
    31. Hashimoto, M.; Kato, Y.-h.; Hatanaka, Y. Chem. Pharm. Bull. 2007, 55, 1540–1543.
    32. Hawthorne, M. F.; Emmons, W. D.; McCallum, K. S. J. Am. Chem. Soc. 1958, 80, 6393–6398.
    33. Hawthorne, M. F.; Emmons, W. D. J. Am. Chem. Soc. 1958, 80, 6398–6404.
    34. Constantino, M. G.; Júnior, V. L.; Silva, G. V. J. d. Magn. Reson. Chem. 2005, 43, 346–347.
    35. Callis, D. J.; Thomas, N. F.; Pearson, D. P. J.; Potter, B. V. L. J. Org. Chem. 1996, 61, 4634–4640.
    36. Tamura, Y.; Miyamoto, T.; Nishimura, T.; Eiho, J.; Kita, Y. J. Chem. Soc., Perkin Trans. 1 1974, 102–104.

    無法下載圖示 本全文未授權公開
    QR CODE