簡易檢索 / 詳目顯示

研究生: 劉曉蓉
Hsiao-Jung Liu
論文名稱: 重組嗜熱嗜鹼性 Archaeoglobus fulgidus 脂肪酶之結構與功能分析
Structure and Function of a Recombinant Thermoalkalophilic Lipase from Archaeoglobus fulgidus
指導教授: 李冠群
Lee, Guan-Chiun
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 126
中文關鍵詞: Archaeoglobus fulgidus脂肪酶嗜熱嗜鹼性鈣離子熱穩定性
英文關鍵詞: Archaeoglobus fulgidus, lipase, thermoalkalophilic, calcium, thermostability
論文種類: 學術論文
相關次數: 點閱:166下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 從嗜高溫古生菌Archaeoglobus fulgidus 基因體所選殖的新型脂肪酶(lipase) 基因AFL 已經成功地在大腸桿菌中被表達,並且以X-ray 結晶繞射的方法解出立體結構。Archaeoglobus fulgidus lipase(AFL) 為嗜熱性與嗜鹼性的脂肪酶,由474 個胺基酸組成,包含18個胺基酸的訊息胜肽以及456 個胺基酸的mature lipase (mAFL),其結構上分為N-端以及C-端,活性中心位於N-端,C-端則含有受質脂肪酸官能基結合部位。本研究主要藉由蛋白質工程和生化分析,配合蛋白質立體結構的觀察,探討AFL 之結構與功能的關係,並找出對脂肪酶活性有影響的胺基酸。在AFL 的立體結構中,發現在兩個功能區域交界之處有許多的ion pairs,其中一對(K184、D370 及E372)以基因定位突變的方式破壞正負電荷引力之後,發現突變種K184A 、D370N 與E372Q 之活性顯著下降,分析K184A 後發現,最適反應溫度由野生種的70~90℃ 改變為僅侷限於90℃,顯示ion pair在兩個區域的交互作用扮演重要的角色。在脂肪酶與受質的結合部位中,推測對受質結合有影響的三個胺基酸:A32,S332 與E339 ,由基因定位突變後,突變種A32W 的受質專一性和野生種的長碳鏈相比,改變為中碳鏈之酯類,並且對中短鏈長的脂肪酸活性比野生種XIII高;而突變種S332W 與E339W 的活性皆低於野生種。在進行X-ray 結晶時觀察到鈣或鎂離子結合於C- 端區域的 D405、D409與D431 上,經由酵素動力學實驗及熱穩定性實驗發現,鈣離子的結合在高溫反應下,有助於AFL 與受質的親和力,並在90℃時穩定酵素結構,鎂離子則沒有幫助,證明鈣離子對於脂肪酶在高溫下有提升穩定性的影響。以三酸甘油脂為受質,分析AFL 的活性後發現有介面活化作用產生,亦即當三酸甘油質達到不溶於水的濃度時,AFL 的活性急遽上升,因此證明了AFL 確實為一脂肪酶而非酯酶,其結構上的口蓋(lid)可能會隨著油水介面的產生而開啟。由鈣離子結合部位的突變種分析,以酵素動力學和熱穩定性的實驗證明D405、D409 與D431 為鈣離子結合部位。以上結果闡述了此嗜熱、嗜鹼的脂肪酶特性以及催化機制和結構上的關係,並提供未來改造AFL 的線索,以因應在生物技術上的應用。

    A novel lipase gene (AFL) from Archaeoglobus fulgidus has been previously cloned and functionally expressed in E. coli. AFL is a thermoalkalophilic lipase. Its three-dimensional structure has been already resolved by X-ray crystography. AFL is composed of 474 amino acid residues with a N-terminal signal peptide (18 amini acid residues) and mature lipase gene (456 amino acid). The N-terminal of AFL contains the catalytic triad and the substrate binding site (tunnel) is located at the C-erminal domain. According to the informations of three-dimensional structure, protein engineering and biochemical characters assay were performed to investigate the structure-function relationship of AFL. In the N- and C-terminal domain interface, K184, D370 and E372 form a electrostatic interaction network to stabilize these two domains. The activities of the mutants K184A, D370N and E372Q dromatically decreased. The optimal temperatur of mutant K184A became narrowly at 90℃ as compared with the broad range one (70-90℃) of wild-type AFL. A32, S332 and E339 located in the substrate binding tunnel were predicted to be involved in the substrate specificity of AFL. Through site-directed mutagenesis and activity assay the substrate specificity of the mutant A32W changed to favor the hydrolysis of middle chain-length esters as compared with the long-chain specificity of wild-type AFL, while the activities of S332W and E339W were lower than wild-type AFL. In the C-terminal domain, there is a putative divalent cation binding site composed of D405, D409 and D431. From kinetics assay, thermostabilty assay and thermo-dynamic assay, the binding of calcium benefited the substrate affinity of AFL at high temperature, and also enhanced the thermostability at the 90℃. On the other hand, magnesium did not affect the substrate affinity and stability of AFL. Through interfacial activation assay using triglycerides as substrate, AFL is proved to be a true lipase rather than a carboxylesterase. A drastic increase in lipase activity occurred when the solubility limit of tricaprylin was exceeded. This means that the apparent rate of hydrolysis correlate with the degree of micellar formation. Consistent with observations on other lipases, the lid conformation may change from closed to open form in the presence of lipid interface. Site-directed mutagenesis assays were performed to identify D405, D409 and D431 which form the cation binding site. These results revealed the structural basis of the thermoalkalophilic characteristics and the catalytic mechanism of AFL, and provides important clues for the engineering of AFL in biotechnological applications.

    目錄 目錄 I 表目錄 VIII 圖目錄 IX 附錄目錄 XI 摘要 XII Abstract XIV 緒論 1 一、脂肪酶 1 1. 前言 1 2. 脂肪酶之結構及作用機制 1 3. 脂肪酶之活性測定 7 4. 脂肪酶在生物技術上之應用 9 二、嗜熱性微生物脂肪酶 13 三、Archaeoglobus fulgidus 脂肪酶 14 四、研究緣起 14 五、研究目的 16 材料與方法 18 一、菌種與培養基 18 1. 基因選殖寄主 18 2. 基因表達寄主 18 二、聚合酶連鎖反應 19 三、質體與質體DNA 的製備 21 1. 質體 21 2. 質體DNA 的製備 22 四、質體轉型 22 1. 勝任細胞的製備 22 2. E. coli 轉形作用 23 五、DNA 定序分析 23 六、蛋白質的表達 23 七、蛋白質的純化 24 1. 超音波破菌法 24 2. Histidine-tagged 蛋白質純化 24 八、蛋白質電泳分析 27 1. 試劑 27 2. SDS-不連續聚丙醯胺膠體溶液調配法 28 3. 膠體的製備 28 4. 試樣的製備與電泳條件( 5X SDS sample buffer ) 29 5. 電泳膠體之染色 29 九、蛋白質的透析 30 十、蛋白質的定量 30 十一、酵素生化特性分析 31 1. 酵素活性分析 31 2. 最適作用溫度分析 32 3. 最適酸鹼值分析 33 4. 受質專一性分析 33 5. 有機溶劑對脂肪酶之影響 34 6. 二價金屬離子對脂肪酶之影響 34 7. 酵素動力學分析 34 8. 熱穩定性分析 35 9. 熱力學分析 35 結果 37 一、基因定位突變 37 二、突變種蛋白質的表達與純化 37 三、N 端及C 端功能區域交界面離子對作用力之分析 37 1. 最適酸鹼值 37 2. 最適溫度 38 3. 受質專一性 39 4. 功能區域介面離子對突變種K184A, D370N, E372Q,D370N/E372Q 之活性分析 40 四、位於受質結合通道之胺基酸突變之分析 40 1. 整體活性與受質專一性分析 40 2. 突變種A32W 對受質p-nitrophenyl caprate 之酵素動力學分析 41 五、二價金屬離子對AFL 活性之影響 42 1. 不同二價金屬離子對AFL 活性之影響 42 2. 鈣離子或鎂離子對AFL 活性與溫度之影響 43 3. 酵素動力學分析 43 4. 鈣離子與鎂離子對AFL 之熱穩定性分析 44 5. 鈣離子與鎂離子對AFL 之受質特異性分析 46 六、熱力學分析 46 七、界面活化作用分析 47 八、有機溶劑耐受性分析 47 討論 49 一、N 端及C 端功能區域交界面離子對作用力之分析 49 1. 最適酸鹼值分析 49 2. 最適作用溫度 49 3. 受質專一性 50 4. 功能區域介面離子對突變種K184A, D370N, E372Q 和D370N/E372Q 之活性分析 51 二、位於受質結合通道之胺基酸突變之分析 51 1. 整體活性與受質專一性分析 51 2. 突變種A32W對受質p-nitrophenyl caprate 之酵素動力學分析 53 三、二價金屬離子對酵素活性之影響 54 1. 二價金屬離子對AFL 活性之影響 54 2. 金屬離子螯合劑對AFL 熱穩定性分析之影響 55 3. 二價金屬離子結合部位之確認 55 四、熱力學分析 56 五、界面活化作用分析 56 六、有機溶劑耐受性分析 57 參考文獻 58 表目錄 表 1. AFL 野生種以及突變種K184A 之最適PH 分析 70 表 2. AFL 野生種與突變種K184A 最適溫度分析 72 表 3. AFL 野生種與突變種K184A 受質專一性分析 74 表 4. 功能區域介面離子對突變種K184A, D370N, E372Q,D370N/E372Q 之活性分析 76 表 5. AFL 突變種A32W, S332W 以及 E339W 之活性與受質專一性分析 78 表 6. AFL 突變種A32W 對受質 CAPRATE 之酵素動力學分析 80 表 7. 二價金屬離子對AFL 活性之影響 82 表 8. 鈣離子、鎂離子及金屬螯合劑對AFL 活性與溫度之影響 84 表 9. AFL 酵素動力學分析 86 表 10. 鈣離子與鎂離子對AFL 之熱穩定性分析 88 表 11. AFL 野生種以及突變種D405, 409, 431N 熱穩定性分析 90 表 12. 鈣離子與鎂離子對AFL 之受質特異性分析 92 表 13. 熱力學分析 94 表 14. 熱力學分析 98 表 15. 有機溶劑對AFL 活性之影響 100 圖目錄 圖 1. AFL 基因定位突變之定序結果 65 圖 2. AFL 單點突變種D370N, E372Q 及 雙點突變種D370N 和E372Q 蛋白質電泳分析 66 圖 3. AFL 二價金屬離子結合部位突變種蛋白質電泳分析 67 圖 4. AFL 突變種D370N 之 FPLC 純化流程圖 68 圖 5. AFL 突變種D370N 之 FPLC 純化結果 69 圖 6. AFL 野生種以及突變種K184A 之最適PH 分析 71 圖 7. AFL 野生種與突變種K184A 最適溫度分析 73 圖 8. AFL 野生種與突變種K184A 受質專一性分析 75 圖 9. 功能區域介面離子對突變種K184A, D370N, E372Q,D370N/E372Q 之活性分析 77 圖 10. AFL 突變種 A32W, S332W 以及 E339W 之活性與受質專一性分析 79 圖 11. AFL 突變種 A32W 對受質 P-NITROPHENYL CAPRATE 之酵素動力學分析 81 圖 12. 二價金屬離子對AFL 活性之影響 83 圖 13. 鈣離子、鎂離子及金屬螯合劑對AFL 活性與溫度之影響 85 圖14. AFL 酵素動力學分析 87 圖 15. 鈣離子、鎂離子與金屬螯合劑對AFL 之熱穩定性分析 89 圖 16. AFL 野生種以及三點突變種D405N, D409N 和 D431N 之熱 穩定性分析 91 圖 17. 鈣離子與鎂離子對AFL 之受質特異性分析 93 圖 18. 熱力學分析 96 圖 19. AFL 之介面活化作用 99 圖 20. 有機溶劑對AFL 活性之影響 101 附錄目錄 附錄 1. CANONICAL FOLD OF Α/Β HYDROLASES. cii 附錄 2. X-RAY STRUCTURE OF PSEUDOMONAS AERUGINOSA LIPASE. ciii 附錄 3. REACTION MECHANISM OF LIPASES. civ 附錄 4. SCHEMATIC REPRESENTATION OF THE TRIACYLGLYCEROL BINDING MODE IN THE ACTIVE SITE OF P. CEPACIA LIPASE AS DEDUCED FROM THE OBSERVED BINDING MODE OF THE RC-TRIOCTYL INHIBITOR cvi 附錄 5. PET-23A(+) VECTOR MAP cvii 附錄 6. 以 PYMOL 模擬 AFL 之構形並標示出位於兩個功能區域介面之胺基酸K184, E364, D370, E372 與 E395 之位置 cix 附錄 7. 以 PYMOL 模擬 AFL 之構形並標示出位於受質結合部位之A32, S332, E339 以及催化三元體S136, D163 與 H210 cxi 附錄 8. 已發表之期刊文章 cxii

    Arpigny, J.L. and Jaeger, K.-E. (1999)Bacterial lipolytic enzymes: classification and properties. Biochem. J. 343:177-183
    Carriere, F., Renou, C., Lopez, V., Caro, J.d., Ferrato, F., Lengsfeld, H., Caro, A.d., Laugier, R., and Verger, R. (2000) The Specific Activities of Human Digestive Lipases Measured From the In Vivo and In Vitro Lipolysis of Test Meals. Gastroenterology 119: 949-960
    Cygler, M., Grochulski, P., Kazlauskas, R.J., Schrag, J.D., Bouthillier, F., Rubin, B., Serreqi, A.N., and Guptai, A.K. (1994) A Structural Basis for the Chiral Preferences of Lipases. J. Am. Chem. SOC. 116: 3180
    Derewenda, Z.S., Derewenda, U., and Dodson, G.G. (1992) The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9 A resolution. J Mol Biol 227: 818-839
    Gaskin, D.J., Romojaro, A., Turner, N.A., Jenkins, J., and Vulfson, E.N. (2001) Alteration of lipase chain length specificity in the hydrolysis of esters by random mutagenesis. Biotechnol Bioeng 73: 433-441
    Gill, I. and Valivety, R. (1997) Polyunsaturated fatty acids, part 1: Occurrence, biological activities and applications. Trends Biotechnol. 15:401-409
    Gill, I. and Valivety, R. (1997) Polyunsaturated fatty acids, part 2: Biotransformations and biotechnological applications. Trends Biotechnol. 15:470-478
    Grochulski, P., Li, Y., Schrag, J.D., Bouthillier, F., Smith, P., Harrison, D., Rubin, B., and Cygler, M. (1993) Insights into interfacial activation from an open structure of Candida rugosa lipase. J Biol Chem 268: 12843-12847
    Grochulski, P., Li, Y., Schrag, J.D., and Cygler, M. (1994) Two conformational states of Candida rugosa lipase. Protein Sci 3: 82-91
    Hjorth, A., Carriere, F., Cudrey, C., Woldike, H., Boel, E., Lawson, D.M., Ferrato, F., Cambillau, C., Dodson, G.G., Thim, L., et al. (1993) A structural domain (the lid) found in pancreatic lipases is absent in the guinea pig (phospho)lipase. Biochemistry 32: 4702-4707
    Jaeger, K.-E., Dijkstra, B.W. and Reetz, M.T. (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annual Review of Microbiology 53:315-351
    Jaeger, K.-E. and Reetz, T. (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol. 16(9):396-403
    Jeong, S.-T., Kim, H.-K., Kim, S.-J., Chi, S.-W., Pan, J.-G., Oh, T.-K. and Ryu, S.-E. (2002) Novel zinc-binding center and a temperature switch in the Bacillus stearothermophilus L1 lipase. The Journal of Biological Chemistry 277:17041-17047
    Kim, K.K., Song, H.K., Shin, D.H., Hwang, K.Y., and Suh, S.W. (1997) The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor. Structure 5: 173-185
    Kim, M.H. et al. (2000) Thermostable lipase of Bacillus stearothermophilus: high-level production, purification, and calcium-dependent thermostability. Biosci. Biotechnol. Biochem 64(2):280-286
    Kim, E.K., Jang, W.H., Ko, J.H., Kang, J.S., Noh, M.J., and Yoo, O.J. (2001) Lipase and its modulator from Pseudomonas sp. strain KFCC 10818: proline-to-glutamine substitution at position 112 induces formation of enzymatically active lipase in the absence of the modulator. J Bacteriol 183: 5937-5941
    Klenk, H.P. et al. (1997) The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390:364-370
    Kouker, G., and Jaeger, K.E. (1987) Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol 53: 211-213
    Lang, D., Hofmann, B., Haalck, L., Hecht, H.J., Spener, F., Schmid, R.D., and Schomburg, D. (1996 Crystal structure of a bacterial lipase from Chromobacterium viscosum ATCC 6918 refined at 1.6 angstroms resolution. J Mol Biol 259: 704-717
    Lang, D.A., Mannesse, M.L., de Haas, G.H., Verheij, H.M., and Dijkstra, B.W. (1998) Structural basis of the chiral selectivity of Pseudomonas cepacia lipase. Eur J Biochem 254: 333-340
    Lesuisse, E., Schanck, K., and Colson, C. (1993) Purification and preliminary characterization of the extracellular lipase of Bacillus subtilis 168, an extremely basic pH-tolerant enzyme. Eur J Biochem 216: 155-160
    Manco, G., Giosue, E., D'Auria, S., Herman, P., Carrea, G., and Rossi, M. (2000) Cloning, overexpression, and properties of a new thermophilic and thermostable esterase with sequence similarity to hormone-sensitive lipase subfamily from the archaeon Archaeoglobus fulgidus. Arch Biochem Biophys 373: 182-192
    Martinez, C., De Geus, P., Lauwereys, M., Matthyssens, G., and Cambillau, C. (1992) Fusarium solani cutinase is a lipolytic enzyme with a catalytic serine accessible to solvent. Nature 356: 615-618
    Ollis, D.L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S.M., Harel, M., Remington, S.J., Silman, I., and Schrag, J. (1992) The alpha/beta hydrolase fold. Protein Eng 5: 197-211
    Polgar, L. (1992) Structural relationship between lipases and peptidases of the prolyl oligopeptidase family. Federation of European Biochemical Societies 311: 281-284
    Rusnak, M., Nieveler, J., Schmid, R.D. and Petri, R. (2005) The putative lipase, AF1763, from Archaeoglobus fulgidus is a carboxylesterase with a very high pH optimum. Biotechnology Letters 27:743-748
    Sanchis, J. et al. (2008) Improved PCR method for the creation of saturation mutagenesis libraries in directed evolution: application to difficult-to-amplify templates. Appl Microbiol Biotechnol 81(2):387-97
    Schrag, J.D., Li, Y.G., Wu, S., and Cygler, M. (1991) Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum candidum. Nature 351: 761-764
    Schrag, J.D., Li, Y., Cygler, M., Lang, D., Burgdorf, T., Hecht, H.J., Schmid, R., Schomburg, D., Rydel, T.J., Oliver, J.D., et al. (1997) The open conformation of a Pseudomonas lipase. Structure 5: 187-202
    Steffens, D.L. and Williams, J.G.K. (2007) Efficient site-directed saturation mutagenesis using oligonucleotides. Journal of Biomolecular Techniques 18:147-149
    Tiss, A., Carriere, F. and Verger, R. (2001) Effect of gum Arabic on lipase interfacial binding and activity. Analytical Biochemistry 294:36-43
    Uppenberg, J., Hansen, M.T., Patkar, S., and Jones, T.A. (1994) The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure 2: 293-308
    Winkler, F.K., D’Arcy, A., Hunziker, W. (1990) Structure of human pancreatic lipase. Nature 343:771-774

    下載圖示
    QR CODE