簡易檢索 / 詳目顯示

研究生: 顏鳳儀
Fong-Yi Yen
論文名稱: 台灣恆春半島現生與考古遺址芋螺殼體穩定碳氧同位素所反映之環境記錄
Environmental records reflected by stable carbon and oxygen isotope compositions of modern and archaeological Conus shells from Hengchun Peninsula , Taiwan
指導教授: 米泓生
Mii, Horng-Sheng
李匡悌
Li, Kuang-Ti
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 104
中文關鍵詞: 穩定同位素恆春半島芋螺古環境季節性考古遺址
英文關鍵詞: stable isotope, Hengchun Peninsula, Conus, Paleoenvironmental, seasonality, archaeological
論文種類: 學術論文
相關次數: 點閱:92下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分析2008年於恆春半島大光里之潮間帶採集海水標本及現生芋螺標本3枚,墾丁考古遺址標本2枚、鵝鑾鼻第二遺址標本1枚及龜山遺址標本1枚之碳氧同位素組成,探討芋螺遺骸標本所反映之古環境之意義。
    現生標本δ18O 數值介於-3.26~-0.72‰ (平均-1.99±0.50‰;1σ,N = 447)、δ13C數值介於-0.14~2.35‰(1.18±0.52‰)之間。其氧同位素值分別呈現6年至9年半之季節性振盪。大光里地區水體氧同位素六個月份平均數值(-0.06±0.23‰),將現生殼體及水體之氧同位素數值代入氧同位素溫度方程式估算,夏季殼體之氧同位素溫度平均大約為30.6°C,比中央氣象局鵝鑾鼻測站之夏季溫度(28.4°C)略高2°C左右。可能與夏季雨量較多有關。殼體氧同位素之冬季溫度約為24.1°C,與測站冬季均溫(24.2°C)極為相近。但在冬季時,殼體有時可能生長中斷,而無法記錄到較冷的環境。
    墾丁遺址(~4000B.P.)之δ18O數值介於-2.70~-0.62‰之間(-1.51±0.04‰,N = 371);δ13C數值介於0.53~2.79‰之間(2.00±0.04‰)。鵝鑾鼻第二遺址(~3250B.P.)δ18O數值介於-2.36~-0.51‰之間(-1.60±0.44‰,N = 188)之間;δ13C數值介於0.68~2.96‰之間(2.11±0.31‰)。龜山遺址(~1500B.P.)δ18O數值介於-3.21~-0.72‰之間(-2.22±0.55‰,N = 178);δ13C數值介於1.63~2.87‰之間(2.36±0.30‰)。氧同位素數值分別呈現出3年以上之季節性變化,而碳同位素與現生標本趨勢呈一致性,隨著個體成長,生長速率漸趨緩慢而逐漸變小。
    由於4000年來全球冰川體積變化不大,本研究以-0.06‰為當時海水氧同位素數值代入計算,估算當時的氧同位素溫度。在4000年前,年均溫約為26°C,冬季均溫為23.6°C;3250年前年均溫為26.4°C,冬季均溫為23.3°C; 1500年前年均溫為29.1°C,冬季均溫為26.1°C。就大趨勢而言,顯示大約4000年前與3250年前較現今略為寒冷,而1500年前則比現今溫暖。

    In order to understand the paleoenvironment of southern Taiwan 4000 B.P., stable isotope composition of Conus shells collected from archaeological sites were analyzed. For comparison, two living Conus shells and sea water samples which they lived in were also collected from Hengchun Peninsula, Taiwan.
    The δ18O and δ13C values of modern samples are between -3.26‰ and -0.72‰ (-1.99±0.50‰;mean±1σ,N = 447) and between -0.14‰ and 2.35‰ (1.18±0.52‰), respectively. Oxygen isotope record of the modern Conus shells showed six to nine and half seasonal cycles. Six month mean seawater oxygen isotope value is -0.06±0.23‰ (N=42). Modern summer oxygen isotope temperatures (28.4°C) are roughly 2°C higher than those recorded in CWB Eluanbi buoy whereas the winter temperatures (24.1°C) are comparable to those of instrumental records. Deviation in summer temperatures might be due to mixing of seawater and heavier precipitation thus lower δ18O values of the mixture water in summer. Occasionally, minimum winter temperature was not recorded in the shell carbonates possibly due to stop growth of Conus.
    The δ18O and δ13C values of Kengting site specimens (~4000B.P.) are between -2.70 and -0.62‰ (-1.51±0.04‰,N = 371) and between 0.53 and 2.79‰ (2.00±0.04‰), respectively. The δ18O and δ13C values of O-Luan-Pi II site samples (~3250B.P.) are between -2.36 and -0.51‰ (-1.60±0.44‰,N = 188) and between 0.68 and 2.96‰ (2.11±0.31‰), respectively. The δ18O and δ13C values of Kueishan site samples (1500B.P.) are between -3.21 and -0.72‰ (-2.22±0.55‰,N = 178) and between 1.63 and 2.87‰ (2.36±0.30‰). These δ18O pattern showed at least three year seasonal cycles. The δ13C fluctuation patterns of archaeological Conus shells were similar to those of modern ones. Both the amplitude in δ13C records decreased with ontogenic growth.
    We assumed the δ18O of 4000B.P. seawater was -0.06‰ because there was no major eustatic sea level change during this period of time. Mean annual temperature (MAT) was approximately 26°C and the mean winter temperature (MWT) was 23.6°C in 4000B.P.. In 3250 years ago, the MAT was 26.4°C and the MWT was 23.3°C. The MAT was 29.1°C and MWT was 26.1°C in 1500B.P.. The temperature of 4000 and 3250 years ago were colder than that of the present, whereas the temperature in 1500 years ago, was warmer than that of present.

    目 錄 頁碼 摘要..………………………………………………………I Abstract…………………………………………………III 誌謝…………………………………………………………V 目錄…………………………………………………………Ⅶ 圖目…………………………………………………………Ⅹ 表目…………………………………………………………XV 第一章、緒論………………………………………………1 1.1 前言…………………………………………………1 1.2 前人研究……………………………………………5 1.2.1 標本簡介及其相關研究……………………………5 1.2.2 4000多年前至今古環境研究概況…………………8 1.3 研究動機與目的……………………………………15 第二章、研究區域及材料……………………………………16 2.1 研究背景……………………………………………16 2.2 現生採樣地點………………………………………17 2.3 史前遺址……………………………………………17 2.3.1 墾丁史前遺址………………………………………19 2.3.2 鵝鑾鼻第二史前遺址………………………………20 2.3.3 龜山史前遺址………………………………………21 2.4 研究材料……………………………………………22 2.4.1 現生標本及水樣採集………………………………22 2.4.2 考古遺址標本………………………………………23 第三章、研究方法……………………………………………24 3.1 芋螺標本前處理……………………………………24 3.2 穩定碳氧同位素分析………………………………25 3.3 海水氧同位素之測定………………………………25 第四章、結果…………………………………………………27 4.1 標本觀察及組成……………………………………27 4.1.1 現生與遺址標本……………………………………27 4.1.2 現生與遺址切片標本………………………………31 4.1.3 以陰極射線檢視標本之保存度……………………32 4.1.4 以拉曼光譜儀鑑別標本之組成……………………33 4.2 穩定碳氧同位素記錄………………………………34 4.2.1 現生標本之碳氧同位素記錄………………………34 4.2.2 考古遺址標本之碳氧同位素記錄…………………37 4.3 海水氧同位素分析及現地資料……………………42 第五章 討論…………………………………………………45 5.1 當地環境探討………………………………………45 5.2 現生標本探討………………………………………52 5.2.1 氧同位素剖面………………………………………54 5.2.2 碳同位素剖面………………………………………58 5.2.3 環境訊號與氧同位素溫度…………………………59 5.3 考古遺址標本探討…………………………………63 5.3.1 氧碳同位素探討……………………………………66 5.3.2 芋螺死亡的季節……………………………………74 5.4 生長速率……………………………………………75 5.5 4000年來之氣候……………………………………76 第六章 結論…………………………………………………79 參考文獻………………………………………………………81 附錄一、現生芋螺殼體碳氧同位素數值……………………90 附錄二、龜山遺址芋螺殼體碳氧同位素數值………………95 附錄三、鵝鑾鼻第二遺址芋螺殼體碳氧同位素數值………97 附錄四、墾丁遺址芋螺殼體碳氧同位素數值………………100 作者簡介………………………………………………………104

    王鑫,1985,第二篇:地理.地形.地質景觀;墾丁國家公園史前文化與生態資料:內政部營建署墾丁國家公園管理處,33-75頁。

    王胄、陳慶生,2000,對黑潮入侵南海過程的一些觀察與看法:台灣海洋學刊第28期,129-151頁。

    宋國城,1991,台灣地質圖說明書:恆春半島,經濟部中央地質調查所,77頁。

    李光周,1984,墾丁國家公園所見的先陶文化及其相關問題:國立臺灣大學考古人類學刊,第44期,79-147頁。

    李光周,1985,第一篇:史前文史景觀;墾丁國家公史前文化與生態資源:內政部營建署墾丁國家公園管理處,3-19頁。

    李光周,1985,墾丁國家公園史前文化及生態資源:墾丁國家公園管理處,共20頁。

    李匡悌,1994,探討台灣南端史前聚落的海洋適應:以龜山史前遺址為例,國立海洋博物館籌備處。

    李匡悌,2000,墾丁國家公園史前文化遺址現況調查及地理資訊系統檔案建立:內政部營建署墾丁國家公園管理處,共206頁。

    李匡悌,2002,恆春半島的人文史蹟:內政部營建署墾丁國家公園管理處,127頁。

    李匡悌,2005,論墾丁史前聚落遺址的貝類採集及其古代水體環境的意義:南島研究學報,第1卷,第2期,47-63頁。

    李政益,2004。恆春半島東源谷地3000年來的沈積物孢粉分析。國立台灣大學地質學研究所碩士論文,共51頁。

    周直建、盧雪峰、武振坤,2001,若爾蓋高原全新世氣候變化的泥炭記錄與加速器放射性碳測年[J]:科學通報,46(12),1040-1044頁。

    長孫東亭、羅素羅、張本、楊仁澤、潭廷義,2007,海洋科學,第31卷,第8期,42-47頁。
    林怡美、米泓生、李匡悌,2007,南台灣中全新世以來之氣候變化紀錄,短摘。

    林淑芬,2004。由孢粉記錄看宜蘭平原最近4200年來的自然環境演變及其與史前文化發展之關係。國立台灣大學地質科學研究所博士論文,共189頁,8圖版。

    竺可禎,1973,中國五千年氣候變遷的初步研究[J],中國科學,16;(2):226-256頁。

    施峰熙,2007,台灣恆春半島現生蠑螺與墾丁遺址蠑螺口蓋穩定碳氧同位素之環境意義,國立臺灣師範大學地球科學系研究所碩士論文,共114頁。

    施雅風、孔昭宸、王蘇民等,1992,中國全新世大暖期氣候與環境的基本特徵.施雅風主編:中國全新世大暖期氣候與環境.北京:海洋出版社, 1-18頁。

    侯光良、劉峰貴,2004,青海東部史前文化對氣候變化的響應:地理學報,第59卷,第6期,841-846頁。

    侯光良、劉峰貴、劉翠華,方修綺,2009,中全新世甘青地區古文化變遷的環境驅動:地理學報,第64卷,第1期,53-58頁。

    郭兆敏,1994。頭社盆地一萬餘年來湖泊沈積物之花粉分析。國立台灣大學地質學研究所碩士論文,共82頁。

    時小軍、余克服、陳特固、張江勇、趙建新,2008,中-晚全新世高海平面的琼海珊瑚記錄:海洋地質與第四紀地質,第28卷,第5期,1-9頁。

    唐領余、沈才明、孔昭宸,1998,青藏高原東部末次冰期最盛期氣候的花粉証據:冰川凍土,20,133-140頁。

    陳培源,2006,台灣地質:台灣省應用地質技術公會,13-1~10頁。

    陳于高,1993,晚更新世以來南台灣地區沿海水面變化與新構造運動研究:台灣大學地質研究所博士論文,共158頁。

    陳佩芬、汪中和、何麗如,1990,台灣的氫氧同位素天水線:地質,第10卷,1期,21-28頁。

    陳金霞、李鐵鋼、曹奇原等,2005,沖繩海槽末次冰期孢粉組合的古環境指示意義:地球科學-中國地質大學學報,第30卷,第5期。

    彭宗仁、汪中和,1990,現生錐螺與臺南層錐螺化石碳氧同位素組成之初步比較:中國地質學會會刊,第33卷,第4期,第289-301頁。

    彭宗仁,1989,苗栗白沙屯過港貝化石層內軟體動物化石之碳氧同位素研究:國立中山大學碩士論文,75頁。

    黃士強、陳有貝、顏學城,1987,墾丁國家公園考古民族調查報告,墾丁國家公園管理保育研究告第37號。

    黃元輝、黃玥、蔣輝,2007,南海北部15kaBP以來表層海水溫度變化:來自海洋硅藻的記錄:海洋地質與第四紀地質,第27卷,第5期,65-74頁。

    黃登福、陳柏瑋,2007,有毒的海洋生物-芋螺刺毒:科學發展,420期,28-31頁。

    張光直,1985,台灣土著貝珠文化叢及其起源與傳播:中國民族學報,第二期,53-127頁。

    張國平,2006,南灣內夏季1-4週溫降與回升現象原因之探討:國立中央大學水文科學研究所碩士論文,共計101頁。

    張秋蓮,2006,南投埔里鯉魚潭自2600年前以來沈積物的孢粉分析:臺灣大學理學院地質科學研究所碩士論文,共89頁。

    張威、穆克華、崔之久、馮金良、楊建強,2007,雲南拱王山地區全新世以來的環境變化記錄:地球與環境,第35卷,第4期,343-350頁。

    劉嘉麒、呂厚遠、Negendank J., 2000,湖光岩瑪珥湖全新世氣候波動的周期性[J]:科學通報,45(11),1190-1195頁。

    劉平妹、郭兆敏,1996,頭社盆地沈積物花粉組合中心仙女木期氣候變化,台灣之第四紀第六次研討會論文集,251-253頁。

    劉平妹,黃淑玉,郭兆敏(2002)從孢粉記錄看近數千年台灣的氣候變遷趨勢。國立台灣大學地質科學系錢憲和、羅煥記教授榮退研討會論文集,第165-170頁。

    謝忠東,丁曉非,李鳳敏,刁有明,2006,3種海產螺殼體相組成及結構特徵分析:水產科學,第25卷,第5期,3頁。

    羅麗萍、朱利東、向芳、楊文光、闞璦珂、羅虹、張擎、朱章義,2008,成都平原4000aBP以來的孢粉記錄與環境變化:古生物學報,47(2),195-202頁。

    Abell, P.I.,1982, Palaeoclimates at Lake Turkana, Kenya, from oxygen isotope ratios of gastropod shells. Nature, 297, p. 321-323.

    Abell, P.I., 1985, Oxygen isotope ratios in modern African gastropod shells: a data base for paleoclimatology. Chem. Geol. (Isot. Geosci. Sect.), 58, p. 183-193.

    Anderson, T. F., and Arthur, M. A., 1983, Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems, in Arthur, M. A., Anderson, T. F., Kaplan, I. R., Veizer, J. and Land, L. S., eds, Stable isotopes in sedimentary geology: SEPM Short Course, n.10, p.1-151.

    Andreasson, F.P., Schmitz, B., and Jönsson, E., 1999, Surface-water seasonality from stable isotope profiles of Littorina littorea shells: Implications for paleoenvironmental reconstructions of coastal areas: Palaios, v. 14, p. 273-281.

    Arthur, M.A., Williams, D.F., and Jones, D.S., 1983, Seasonal temperature-salinity changes and thermocline development in the mid-Atlantic Bight as recorded by the isotopic composition of bivalves: Geology, v. 11, p. 655-659.

    Attendorn, H. G., and Bowen, R. N. C., 1997, Radioactive and Stable Isotope Geology: Chapman & Hall, London, 522p.

    Centurioni, Luca, R., Pearn P. Niiler and D.K. Lee ,2004, Observations of inflow of Philippine Sea Surface Water into the South China Seathrough th Luzon Strait:American Meteorological Society, p.113-121.

    Chu, K., 1973, A preliminary study on the climatic fluctuations during the last 5000 years in China. Sci. China, Ser. B-Ser. 16(2), p. 226-256.

    Dodd, J.R., and Stanton, R.J., 1990, Paleoecology: Concepts and applications: New York, Wiley, 502 p.

    Dorale J.A., Gonzalez I.A., Reagan M.K.,1992, A high-resolution record of Holocene climate change in speleothem calcite from cold water cave, Northeast Iowa. Science, 258, 1626-1630.

    Epstein, S. and Mayeda, T., 1953,Variation of 18O content of waters from natural sources: Geochimica Et Cosmochimica Acta, 4, 213-224.

    Epstein, S., Buchsbaum, R., Lowenstam, H.A., and Urey, H.C., 1953, Revised carbonate-water isotopic temperature scale: Geological Society of America Bulletin, v. 64, p.1315-1325.

    Farris, A. and M. Wimbush , 1996, Wind-induced Kuroshio intrusion into the South China Sea: Journal of Oceanography, 52, p.771-784.

    Fairbanks, R.G., 1989, A 17,000 year glacial euststic sea level record:
    influence of glacial melting rates on the Younger Dryas event and deep ocean circulation. Nature 342, p.637–641.

    Ge Q.S., Zheng J.Y., Fang X.Q., 2002, Winter temperature variation in eastern China over the past 2000 years. Quat. Res. 22, p.166-173 (in Chinese).

    Gentry D.K., 2006, Seasonal isotope and trace-mental profiles of serially-sampled Conus Gastropodos: proxies for paleoenvironmental change: Texas A&M University master of science, 57p.

    Gentry, D.K., Sosdian, S., Grossman, E.L.,Rosenthal, Y., Hicks, D., and Lear, C.H., 2008, Stable isotope and Sr/Ca profiles from the marine gastropod Conus ermineus: testing a multiproxy approach for inferring paleotemperature and paleosalinity: Palaios, v. 23, p.195-209.

    Goodwin, D.H., Schöne, B.R., and Dettman, D.L., 2003, Resolution and fidelity of oxygen isotopes as paleotemperature proxies in bivalve mollusk shells: Models and observations: Palaios, v. 18, p. 110-125.

    Grossman, E.L., and Ku, T.L., 1986, Oxygen and carbon isotope fractionation in biogenic aragonite: Temperature effects: Chemical Geology, v. 59, p. 59-74.

    Hays, P. D., and Grossman, E.T., 1991, Oxygen isotope in meteoric calcite cements as indicators of continental climate: Geology, v.19, p.441-444.

    Hudson, J.D., 1977, Stable isotopes and Limestone lithification: Geological Society of London Journal, v.133, p.637-660.

    Hudson, J.D., and Anderson, T.F., 1989, Ocean temperature and isotopic compositions through time: Transactions of Royal Society of Edinburgh, Earth Science, v.80, p.183-192.

    Ivany, L. C., Lohmann, K. C. and Patterson, W. P., 2003: Paleogene temperature history of the U.S. Gulf Coastal Plain inferred from δ18O of fossil otoliths. In Prothero, D. R., Ivany, L. C., and Nesbitt, E. A., eds., From Greenhouse to Icehouse-the marine Eocene-Oligocene transition, p. 232-251, Columbia University Press, New York.

    Jacoby, G. C., D’Arrigo, R. D., and Davaajamts, T., 1996, Mongolian tree rings and 20th-century warming: Science, v.273, p. 771-773.

    Jones, D.S., 1981, Annual growth increments in shells of Spisula solidissima record marine temperature variability: Science 211, p.165-167.

    Jones, D.S., Williams, D.F., and Arthur, M.A., 1983, Growth history and ecology of the Atlantic surf clam Spisula solidissima (Dillwyn), as revealed by stable isotopes and annual shell increments: Journal of Experimental Marine Biology and Ecology, v. 73, p. 225-242.

    Keith, M.L., and Parker, R.H., 1965, Local variation of 13C and 18O content of mollusk shells and the relatively minor temperature effect in marginal marine environments: Marine Geology, v. 3, p.115-129.

    Killingley, J.S., 1981 Seasonality of mollusk collecting determined from O-18 profiles of midden shells. American Antiquity, 46, p.152-158.

    Klein, R.T., Lohmann, K.C., and Thayer, C.W., 1996, Sr/Ca and 13C/12C ratios in skeletal calcite of Mytilus trossulus: Covariation with metabolic rate, salinity, and carbon isotopic composition of seawater: Geochimica et Cosmochimica Acta, v. 60, p.4207-4221.

    Kobashi, T., Grossman, E.L., Yancey, T.E., and Dockery, D.T., 2001, Reevaluation of conflicting Eocene tropical temperature estimates: Molluskan oxygen isotope evidence for warm low latitudes: Geology, v. 29, p. 983-986.

    Kobashi, T., and Grossman, E.L., 2003, The oxygen isotopic record of seasonality in Conus shells and its application to understanding Late Middle Eocene (38 Ma) climate: Paleontological Research, v. 7, p.343-355.

    Kohn, A. J.,1959, The ecology of Conus in Hawaii: Ecological Monographs 29,p.47-90.

    Kohn, A. J. (1992), A Chronological Taxonomy of Conus, 1758 – 1840, Smithsonian Inst. Press, Washington, D. C.

    Kohn, A. J., and F. E. Perron (1994), Life History and Biogeography: Patterns in Conus, Oxford Univ. Press, New York.

    Krantz, D.E., Williams, D.F., and JONES, D.S., 1987, Ecological and paleoenvironmental information using stable isotope profiles from living and fossil molluscs: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 58, p. 249–266.

    Lee, H.-J., Chao, S.-Y., Fan, K.-L., Wang, Y.-H., Liang, N.-K., 1997, Tidally induced upwelling in a semi-enclosed basin: Nan Wan Bay.Journal of Oceanography 53, 467-480.

    Lee, H.-J., Chao, S.-Y., Fan, K.-L., Kuo, T.-Y., 1999, Tide-induced eddies and upwelling in a semi-enclosed basin: Nan Wan. Estuarine, Coastal and Shelf Science 49, 775-787.

    Liew, P.M. and Huang, S.Y. (1994) A 5000 year’s pollen record from Chitsai lake, in Central Taiwan: TAO 5(3), p.411-420.

    Mook, W.G., and Vogel, J.C., 1968, Isotopic equilibrium between shells and their environment: Science, v. 159, p. 874-875.

    Moore R.C., Lalicker C.G., Fischer A.G., 1974, Invertebrate fossils, 766p.

    Muehlenbachs, K., and Clayton, R.N., 1976. Oxygen isotope composition of the oceanic crust and its bearing on seawater. Journal of Geophysical Research. 81, p.4365-4369.

    Pamela L. Beesley; Graham J. B. Ross; Alice Wells, 1998. Family Conidae. Mollusca The Southern Synthesis PartB Fauna of Australia Volume5. 15: p.853-855.

    Phadtare, N. R., 2000, Sharp Decrease in Summer Monsoon Strength 4000-3500 cal yr B.P. in the Central Higher Himalaya of India Based on Pollen Evidence from Alpine Peat. Quaternary Research, p.122–129.

    Popp, B.N., Anderson, T.F., and Sandberg, P.A., 1986, Brachiopods as indicators of original isotopic compositions in some Paleozoic limestones: Geological Society of America Bulletin, v. 97, p. 1262-1269.

    Purton, L., and Brasier, M., 1997, Gastropod carbonate δ18O and δ13C values record strong seasonal productivity and stratification shifts during the late Eocene in England: Geology, v. 25, p.871-874.

    Rockel, D., W. Korn, and A. J. Kohn (1995), Manual of the Living Conidae, vol. 1, Indo-Pacific Region, Springer-Verlag, New York.

    Ruddiman, W. F., 2000, Earth’s Climate-past and future: W.H. Freeman and company, New York, 441p.

    Schifano, G. and Censi, P., 1983, Oxygen isotope composition and rate of growth of Patella coerulea, Monodonta turbinate and M. articulate shells from the western coast of Sicily: Palaeogeogr., Paiaeoclimatol., Palaeoecol., 42, p.305-311.

    Shackleton, N.J., 1967, Oxygen isotope analyses and Pleistocene temperatures re-assessed: Nature, v. 215, p. 15-17

    Shackleton, N.J., 1973, Oxygen isotope analysis as a means of determining season of occupation of prehistoric midden sites. Archaeometry, 15, p. 133-141.

    Sharp Z., 2007, Principles of stable isotope geochemistry: Pearson Prentice Hall, 344p.

    Shen C.-C., Liu K.-K., Lee M.-Y., Lee T., Wang C.-H., Lee H.-J.,2005, A novel method for tracing coastal water masses using Sr/Ca ratios and salinity in Nanwan Bay, southern Taiwan: Estuarine, Coastal and Shelf Science 65, p.135-142.

    Sosdian, S., Gentry, D.K., Lear, C.H., Grossman, E.L., Hicks, D., and Rosenthal, Y., 2006, Strontium to calcium ratios in the marine gastropod Conus ermineus:Growth rate effects and temperature calibration: Geochemistry, Geophysics, and Geosystems, v. 7, Q11023.

    Spero, H.J., J. Bijima, D. Lea and B.E. Bemis (1997) Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature, 390(4), p.497-500.

    Suzuki A., Yukino I., Kawahata H., 1999. Temperature-skeletal δ18O relationship of Porites australiensis from Ishigaki Island, the Ryukyus, Japan: Geochem. J., v33, 419-428.

    Taira, K., 1976, Oxygen isotope analysis of mollusk shells from Pleistocene littoral deposits in Japan. Palaeogeogr., Palaeoclimat., Palaeoecol., 19, p. 139-145.

    Walls, J. G. (1978), Cone shells: A synopsis of the living Conidae, T. F. H. Publ., Neptune City, N. J.

    Wang Y., Cheng H., Edwards R.L ., 2005, The Holocene Asian monsoon: links to solar changes and North Atlantic climate[J]: Science, 308(6),854-857.

    Webb, T., Ⅲ, 1998, Late Quaternary Climates: Data Synthesis and Model Experiments: Quaternary Science Reviews, v.17, p.587-606.

    Wheeler, A.P., 1992, Mechanisms of molluscan shell formation: in Bonucci, E., ed., Calcification in Biological Systems: CRC Press, Boca Raton, p. 179–216.

    Williams, P. W., Marshall, A., Ford, D. C. and Jenkinson, A. V., 1999, Palaeoclimatic interpretation of stable isotope data from Holocene speleothems of the Waitomo district, North Island, New Zealand: Holocene, v.9, p. 649-657.

    Wilkinson, B.H. and Ivany, L.C., 2002, Paleoclimatic inference from stable isotope profiles of accreationary biogenic hardparts – a quantitative approach to the evaluation of incomplete data: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 185, p. 95-114.

    Yu K.F., Zhao J.X., Wei G.J., C X.R., W P.X.,2005, Mid-late Holocene monsoon climate retrieved from seasonal Sr/Ca and δ18O records of Porites lutea corals at Leizhou Peninsula, northern coast of South China Sea: Global and Planetary Change 47,p.301-316.

    Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K., 2001, Trends, rhythms, and aberrations in global climate 65 Ma to present: Science, v. 292, p. 686-693.

    下載圖示
    QR CODE