簡易檢索 / 詳目顯示

研究生: 張志成
Chih Cheng Chang
論文名稱: 半穿透型水膠的合成及作為水泥砂漿自養護劑之研究
指導教授: 許貫中
Hsu, Kung-Chung
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 92
中文關鍵詞: 半穿透式水膠吸水率砂漿自養護劑重量損失
英文關鍵詞: semi-IPN hydrogel, water absorbency, mortar, self-curing agent, weight loss
論文種類: 學術論文
相關次數: 點閱:93下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要是合成一半穿透式網狀(semi-IPN)水膠poly 2-(3-carboxy- propanamido) acetate/polyacrylamide (PPAA/PAM),探討其作為混凝土自養護劑的可行性。實驗上使用PPAA和acrylamide(AM),以APS為起始劑、MBA為交聯劑聚合得到PPAA/PAM水膠。探討起始劑濃度、交聯劑濃度與PPAA相對於PAM重量比例對於PPAA/PAM在純水中吸水率的影響,以及水膠在鹽水和不同pH值與溫度下的吸水行為,並且藉由電子掃描顯微鏡觀測水膠吸水前後的孔洞大小。另外,將水膠加入砂漿中,探討水膠對於砂漿重量損失、內部濕度、抗壓強度與乾縮的影響。
    研究結果顯示在適當反應條件下可成功的聚合得到PPAA/PAM水膠。合成的單體與水膠藉由NMR及FT-IR光譜來確認其結構。隨著APS濃度的增加,水膠在純水中的吸水率呈現先增後減的趨勢;隨著MBA濃度的增加,水膠的吸水率漸減;隨著PPAA含量的增加,水膠的吸水率漸增。當APS的莫耳濃度相對於AM單體的濃度為1.0 %、MBA的莫耳濃度為2.0 %、PPAA相對於PAM重量比例為1時所製得之水膠(代號P1115)在純水中的飽和吸水率達到426 g/g,在0.1M NaCl(aq)和0.1M CaCl2(aq)的飽和吸水率分別為69和66 g/g。添加0.2wt% P1115的水泥砂漿(M02)在28天的重量損失13.2g,低於未添加水膠的水泥砂漿(M00)重量損失(=14.3g);M02在28天的抗壓強度為34.2 MPa,高於M00的抗壓強度(=31.9 MPa);M1在28天的內部相對濕度為68.7%,高於M0的相對濕度(=64.7%);M1在28天的乾縮量為0.189 mm,低於M0的乾縮量(=0.236 mm)。XRD與DSC的測試結果顯示添加P1115的水泥漿之水泥水化程度亦高於未添加水膠的水泥漿。

    This thesis is to prepare a semi-IPN hydrogel, i.e., poly 2-(3-carboxy- propanamido) acetate/polyacrylamide (PPAA/PAM) as a potential self-curing agent for concrete. Experimentally, PPAA/PAM hydrogel was prepared by reacting PPAA and acrylamide using APS as an initiator, MBA as a crosslinking agent. The effects of APS concentration, MBA concentration, and PPAA/PAM ratio on the water absorbency of the hydrogel in deionized water were examined. The water absorption behavior of the hydrogel in salt solutions at different pH values and temperatures was also studied. The pore size of the hydrogel before and after water-absorption was observed and analyzed using a SEM. Furthermore, the hydrogel was added in mortars; the effects of hydrogel on the properties of mortars such as weight loss, humidity, compressive strength, and dry shrinkage were determined.
    The results indicated PPAA/PAM hydrogel was prepared successfully; its structure was verified by the NMR and FT-IR spectra. Along with increasing APS concentration, the water absorbency of the hydrogel in deionized water increases initially, reaches a maximum, and then decreases afterward. The water absorbency decreases with increasing MBA concentration or PAM content monotonically. The saturated water absorbencies of P1115 hydrogel ( [APS]/[AM] =1%, [MBA]/[AM]=2%, and [PPAA]/[PAM]=1) are 426 g/g, 69 g/g, and 66 g/g in deionized water, 0.1M NaCl(aq) and 0.1M CaCl2(aq) respectively. The weight loss of mortars with 0.2% P1115 (M02) is 13.2g, which is lower than that (=14.3g) of mortars without any hydrogel present (M00). The compressive strength of M02 is 34.2 MPa, which is higher than that (=31.9 MPa) of M00. The relative humidity in M02 is 68.7%, which is higher than that (=64.7%) in M00. The dry shrinkage of M02 is 0.189 mm, which is lower than that (0.236 mm) of M00. Finally, incorporation of hydrogel could improve the degree of cement hydration in cement pastes, as examined from both XRD and DSC measurements.

    謝 誌 I 摘要 III Abstract V 目錄 VII 第一章 緒論 1 1-1 前言 1 1-2 研究目的 3 第二章 文獻回顧 5 2-1 高吸水性水膠簡介 5 2-2 水膠之吸水原理 7 2-2-1吸水官能基對水的親和力 7 2-2-2溶液外與水膠內離子滲透壓差 8 2-2-3 交聯密度 8 2-2-4 鹽水溶液的影響 8 2-2-5 溫度及pH造成分子內交聯作用影響 10 2-3 高吸水性水膠之性能 11 2-4 水泥 13 2-4-1 卜特蘭水泥之組成 13 2-4-2 水泥之水化 14 2-4-3 收縮變形機理 15 2-5添加水膠對水泥影響 17 2-5-1改質機制 17 2-5-2 添加水膠對凝結時間影響 18 2-5-3添加水膠對水化速率影響 18 2-5-4 PVC改質成輕質骨材與水膠比較 19 2-5-5利用Power model對水泥水化成分組成說明 21 第三章 水膠之合成與實驗流程 25 3-1 實驗流程 25 3-2 實驗材料與實驗設備 26 3-2-1藥品 26 3-2-2水泥 27 3-2-3 實驗儀器 27 3-3 實驗方法 29 3-3-1 PAsp之合成 29 3-2-2 PPAA合成 29 3-2-3 PPAA/PAM水膠合成 30 3-4 聚合物結構分析與鑑定 31 3-4-1 紅外線(IR)光譜分析 31 3-4-2 核磁共振(NMR)光譜分析 31 3-4-3 粉末X光繞射分析(Powder XRD)儀 31 3-4-4熱示差掃瞄卡量計(DSC) 33 3-4-5 PPAA/PAM水膠吸水率測定 33 3-4-6 PPAA/PAM水膠在鹽水溶液吸水率 34 3-4-7 PPAA/PAM水膠在不同pH值下吸水率 34 3-4-8 PPAA/PAM水膠在不同溫度下吸水率 34 3-5聚合物PPAA/PAM對水泥漿之性質分析 35 3-5-1水泥漿試體之拌製 35 3-5-2 凝結時間試體拌製 35 3-6 聚合物PPAA/PAM對水泥砂漿之性質分析 36 3-6-1 水泥砂漿試體之拌製 36 3-6-2 水泥砂漿試體重量損失量之測量 37 3-6-3 水泥砂漿試體抗壓強度之測量 37 3-6-4 水泥砂漿試體溼度之測量 37 3-6-5水泥砂漿圓盤塑性乾縮製作 37 3-6-6水泥砂漿乾燥收縮 38 第四章 結果與討論 40 4-1 聚合物之結構鑑定 40 4-1-1 PAsp結構鑑定 41 4-1-2 PPAA結構分析 41 4-1-3 PPAA/PAM水膠結構鑑定 42 4-2 反應條件對PPAA/PAM水膠吸水率之影響 43 4-2-1 單體比合成水膠對吸水率影響 44 4-2-2 交聯劑濃度對PPAA/PAM水膠吸水率之影響 44 4-2-3 起始劑濃度對PPAA/PAM水膠吸水率之影響 45 4-3 鹽水溶液及pH值對水膠吸水率之影響 47 4-3-1 鹽水溶液對水膠吸水率之影響 47 4-3-2 pH對水膠吸水率之影響 48 4-3-3 溫度對水膠吸水率之影響 49 4-4 水膠對水泥漿性質的影響 50 4-4-1 水泥水化反應程度定性分析 50 4-4-2 水泥水化反應程度定量分析 51 4-4-3 添加水膠對水泥漿凝結時間影響 52 4-5 水膠對水泥砂漿性質的影響 53 4-5-1 水膠劑量對水泥砂漿重量損失影響 53 4-5-2 水膠劑量對初始水量對水泥砂漿重量損失影響 54 4-5-3 水膠劑量對水泥砂漿抗壓強度影響 55 4-5-4 水膠劑量對初始水量對水泥砂漿抗壓強度影響 55 4-5-5 相同水膠劑量對初使水量在水泥砂漿重量損失及強度 影響 56 4-5-6 水膠劑量對圓盤水泥漿裂縫指數 56 4-5-7 水膠劑量對水泥砂漿試體乾燥收縮影響 57 4-6 PPAA/PAM水膠添加PEG對水泥材料性質的影響 58 4-6-1 水膠添加不同PEG量對水泥砂漿抗壓強度影響 58 4-6-2水膠於水泥漿XRD對水化程度作定性分析 59 4-6-3水膠於水泥漿DSC對水化程度作定量分析 59 第五章 結論 86 第六章 參考資料 88

    1. F. Fornasieroc, M. Ung, C. J. Radke, and J. M. Prausnitz, Glass-transition temperatures for soft-contact-lens materials. Dependence on water content, Polymer, 46 (2005), 4845–4852.

    2. S. H. Kim, C. Marmo, and G. A. Somorjai, Friction studies of hydrogel contact lenses using AFM: non-crosslinked polymers of low friction at the surface, Biomaterials, 22 (2001), 3285–3294.

    3. A. Pourjavadi, B. Farhadpour, and F. Seidi, Synthesis and investigation of swelling behavior of new agar based superabsorbent hydrogel as a candidate for agrochemical delivery, J Polym Res, 16 (2009), 655–665.

    4. V. D. Athawale, and V. Lele, Recent Trends in Hydrogels Based on Starch-graft-Acrylic Acid: A Review, Starch/Stärke, 53 (2001), 7–13.

    5. S. Li, X. Liu, Synthesis, characterization, and evaluation of enzymatically degradable poly(N-isopropylacrylamide-co-acrylic acid) hydrogels for colon-specific drug delivery, Polym. Adv. Technol, 19 (2008), 1536–1542.

    6. S. Aoyagi, H. Onishi, Y. Machida, Novel chitosan wound dressing loaded with minocycline for the treatment of severe burn wounds, International Journal of Pharmaceutics, 330 (2007), 138–145.

    7. J. Zhang, S. Xu, and E. Kumacheva, Polymer Microgels: Reactors for Semiconductor, Metal, and Magnetic Nanoparticles, J. AM. CHEM. SOC. 126 (2004), 7908-7914.

    8. P.S.K.. Murthy, Y.M. Mohan, K. Varaprasad, B. Sreedhar and K.M. Raju, First successful design of semi-IPN hydrogel–silver nanocomposites: A facile approach for antibacterial application, Journal of Colloid and Interface Science, 318 (2008), 217–224.

    9. 吳季懷, 林建明, 魏月琳, 林松柏, 高吸水保水材料, 化學工業出版社, (2005).

    10. P.S.K. Murthy, Y.M. Mohan, J. Sreeramulu, and K.M. Raju, Semi-IPNs of starch and poly(acrylamide-co-sodium methacrylate): Preparation, swelling and diffusion characteristics evaluation, Reactive & Functional Polymers, 66 (2006), 1482–1493.

    11. P. J. Flory, Principle of Polymer Chemistry, (1953)

    12. Y. M. Mohan, P. S. Keshava Murthy, J. Sreeramulu and K. Mohana Raju, Swelling Behavior of Semi-Interpenetrating Polymer Network Hydrogels Composed of Poly(Vinyl Alcohol) and Poly(Acrylamide-co-Sodium Methacrylate), J Appl Polym Sci, 98 (2005), 302–314.

    13. W. Li, J. Wang, L. Zou, and S. Zhu, Synthesis and characterization of potassium humate–acrylic acid–acrylamide hydrogel, J Polym Res 15 (2008), 435–445.

    14. Y. Zheng, P. Li, J. Zhang, and A. Wang, Study on superabsorbent composite XVI.Synthesis, characterization and swelling behaviors of poly(sodium acrylate)/vermiculite superabsorbent composites, European Polymer Journal, 43 (2007), 1691–1698.

    15. A. Pourjavadi, A.M. Harzandi, and H. Hosseinzadeh, Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air, European Polymer Journal 40 (2004), 1363–1370.

    16. Y. Zhao, J. Kang, and T. Tan, Salt-, pH- and temperature-responsive semi-interpenetrating polymer network hydrogel based on poly(aspartic acid) and poly(acrylic acid), Polymer 47 (2006) 7702e7710

    17. A. Pourjavadi, and H. Salimi, New Protein-Based Hydrogel with Superabsorbing Properties: Effect of Monomer Ratio on Swelling Behavior and Kinetics, Ind. Eng. Chem. Res, 47 (2008), 9206–9213.

    18. S. Chen, M. Liu, S. Jin, and Y. Chen, Synthesis and Swelling Properties of pH-Sensitive Hydrogels Based on Chitosan and Poly(methacrylic Acid) Semi-interpenetrating Polymer Network, J Appli Polym Sci, 98 (2005), 1720–1726

    19. S. J. Kim, S. R. Shin, D. I. Shin, I. Y.Kim, and S. I. Kim, Synthesis and Characteristics of Semi-interpenetrating Polymer Network Hydrogels Based on Chitosan and Poly(hydroxy ethyl methacrylate, J Appli Polym Sci, 96 (2005), 86–92

    20. 楊思廉, 工業化學概論, 高立 (1992).

    21. C. Jolicoeur and M. A. Simard, Chemical admixture-cement interactions: Phenomenology and physico-chemical concepts, Cem. Concr. Composites 20 (1998), 87–101.

    22. S. Hanehara and K. Yamada, Interaction between cement and chemical admixture from the point of cement hydration, absorption behaviour of admixture, and paste rheology, Cem. Concr. Res. 29 (1999), 1159–1165.

    23. Y. Ohama, Recent progress in concrete-polymer composites, Advn Cem Bas Mat, 5 (1997), 31-40.

    24. Mishra, P. C. Singh, V. K. Narang, K. K., and Singh, N.K.. Effect of carboxymethyl-cellulose on the properties ofcement. Materials and Engineering, A 357 (2003), 13–19.

    25. Zhihong, W. Yucuia, H., and Yuan, H..Research on increasing effect of solution polymerization for cement-based composite. Cement and Concrete Research, 33 (2003), 1655–1658.

    26. J.P. Won, J.H. Kim, C.G. Park, J.W. Kang, and H.Y. Kim, Shrinkage Cracking of Styrene Butadiene Polymeric Emulsion-Modified Concrete Using Rapid-Hardening Cement, J Appli Polym Sci, 112 (2009), 2229-2234.

    27. R.O. Fichet, C.C. Gauthier, and P. Boch, Microstructural aspects in a polymer-modified cement. Cement and Concrete Research, 28 (1998), 1687-1693.

    28 J.H. Kim, R.E. Robertson, and A.E. Naaman, Structure and properties of poly(vinyl alcohol)-modified mortar and concrete. Cement and Concrete Research, 29 (1999), 407-415.

    29. S.C. Kou, G. Lee, C.S. Poon, and W.L. Lai, Properties of lightweight aggregate concrete prepared with PVC granules derived from scraped PVC pipes, Waste Management, 29 (2009), 621–628.

    30. D.P. Bentz, E.F. Irassar, B. Bucher, and W.J. Weiss, Limestone Fillers to Conserve Cement in Low w/cm Concretes: An Analysis Based on Powers' Model, Concrete International, 31 (2009), 41-46.

    31. A. Li, J. Zhang and A. Wang, Synthesis, characterization and water absorbency properties of poly(acrylic acid)/sodium humate superabsorbent composite, Polym. Adv. Technol. 16 (2005), 675–680.

    32. Z. C. Grasley and D. A. Lange, Thermal dilation and internal relative humidity of hardened cement paste, Materials and Structures, 40 (2007), 311–317.

    33. T. A. Hammer and E. J.Sellevold, Cracking in high performance concrete before setting, Sherbrooke, (1998), 1-16.

    34. S. Xu, R. Wu, X. Huang, L. Cao and J. Wang, Effect of the anionic-group/cationic-group ratio on the swelling behavior and controlled release of agrochemicals of the amphoteric, superabsorbent polymer poly(acrylic acid-co-diallyldimethylammonium chloride), J. Appl. Polym. Sci. 102 (2006), 986–991.

    35. S.J. Kim, S. R. Shin, D.I. Shin, I.Y. Kim, and S.I. Kim, Synthesis and Characteristics of Semi-interpenetrating Polymer Network Hydrogels Based on Chitosan and Poly(hydroxy ethyl methacrylate), J Appli Polym Sci, 96 (2005), 86–92.

    36. 黃兆龍, 混凝土性質與行為, 詹氏書局, 台北 (1997).

    37. S. P. Shah, and K.Wang, Development of “green” cement for sustainable concrete using cement kiln dust and fly ash, International Workshop on Sustainable Development and Concrete Technology.

    38. A.P. Kirchheim, V.F. Fernàndez, P.J. Monteiro, D. C. Dal Molin, and I. Casanova, Analysis of cubic and orthorhombic C3A hydration in presence of gypsum and lime, J Mater Sci, 44 (2009), 2038–2045.

    39. M.Y.A. Mollah, F. Lu, and D.L. Cocke, An X-ray diffraction XRD and Fourier transform infrared spectroscopic FT-IR. characterization of the speciation of arsenic (V) in Portland cement type-V, The Science of the Total Environment, 224 (1998), 57-68.

    40. W. Sha, and G. B. Pereira, Differential scanning calorimetry study of ordinary Portland cement paste containing metakaolin and theoretical approach of metakaolin activity, Cement &Concrete Composite 23 (2001), 455-461

    41. W. Sha, E. A. O'Neill, and Z. Guo, Differential scanning calorimetry study of
    ordinary Portland cement, Cement and Concrete Reasearch 29 (1999) 1487-1489.

    42. J.H. Kim, R.E. Robertson, A.E. Naaman, Structure and properties of poly(vinyl alcohol)-modified mortar and concrete, Cement and Concrete Research 29 (1999) 407–415.

    43. R.K. Dhir, P.C. Hewlett, J.S. Lota, T.D. Dyer, An investigation into the feasibility of formulating ‘self-cure’ concrete, Materials and Structures, 27(1994) 606-615.

    下載圖示
    QR CODE