簡易檢索 / 詳目顯示

研究生: 呂學樺
Hsueh-Hua Lu
論文名稱: 海藻糖對DNA遭受紫外線破壞之保護作用
Protection of DNA by Trehalose from Ultraviolet Damage
指導教授: 李冠群
Lee, Guan-Chiun
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 62
中文關鍵詞: 海藻糖UVDNA
論文種類: 學術論文
相關次數: 點閱:67下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 海藻糖(trehalose)是由兩個葡萄糖分子藉α,α-1,1-鍵結而成的非還原性雙糖,自然界中即存在,常見於植物、低等無脊椎動物以及大多微生物如真菌、細菌及古生菌中。海藻糖在自然界所扮演的角色是生物體抵抗逆境的重要分子。被認為是穩定蛋白質、細胞膜與DNA,提高存活率的重要因素。細胞內的海藻糖是否能夠提供DNA對放射線的保護性,目前尚未見報導。本研究在證明E. coli細胞內的海藻糖能提供DNA對UV破壞的保護效果。藉由對pyrimidine dimer具專一性的T4 pdg酵素切割,以及DNA鹼性電泳的定量分析,決定不同UV照射劑量下DNA所產生的cyclobutane pyrimidine dimers (CPDs),以此為判斷DNA損傷程度的主要指標。並分析DNA傷害程度與海藻糖之間的關係。首先在活體外,以萃取純化好的E. coli基因體DNA混合在不同濃度的海藻糖中進行UV照射,確認了UV劑量越高,對應DNA完整性越低,而且在相同劑量下,高濃度海藻糖(100 mM)對DNA的保護效果較低濃度或不含海藻糖要好。在活體E. coli細胞內,藉由誘導海藻糖合成酶基因的表現使細胞內累積海藻糖,並進行UV照射加以分析,結果發現累積海藻糖的菌株在720 J/m2 的UV劑量下所造成的傷害為22 CPDs/Mbs,沒有累積海藻糖的菌株則是46 CPDs/Mbs。此研究結果證明海藻糖不但在活體外提供DNA抵抗UV之保護性,同時在證明在活體細胞中的海藻糖也具有保護DNA抵抗UV對其結構的破壞作用。

    Trehalose, a non-reducing disaccharide compound, consists of two glucose by the α,α-1,1- glycosyl bond. It exists naturally in plants, invertebrates, fungi and most prokaryotes, like bacteria. Some reports suggest that trehalose is important for organisms to resist the stress, and it also plays an important role to make protein, membrane and DNA molecules more stable. However, there is no report suggests the protection by trehalose of DNA from UV irradiation in vivo. Our objective is to confirm the protection of DNA by trehalose from UV in vivo. We quantify the formation of cyclobutane pyrimidine dimers (CPDs) in DNA under multiple dosage of UV irradiation by alkaline gel electrophoresis with pyrimidine dimer specific T4 pdg digestion. Formation of CPDs is an important index to determine the level of DNA damage, and we analyze the relationship between DNA damage and trehalose. First, we extract genomic DNA from E .coli and mix with multiple dosage of trehalose, then make the mixture expose to UV light. We found the levels of intact DNA decreased with increasing UV dosage, and the DNA mixed with 100 mM trehalose showed more intact than that mixed with less trehalose. We make E. coli accumulate intracellular trehalose in vivo by induction of trehalose synthase, and then exposed to UV irradiation, followed by analysis. The results show that the cells with accumulated trehalose formed 22 CPDs/Mbs under UV dosage of 720 J/m2, and cells without intracellular trehalose formed 46 CPDs/Mbs. According to these results, trehalose not only protect DNA from UV in vitro, but also perform protection of DNA against structure damage from UV irradiation in vivo.

    圖目錄 V 摘要 VII Abstract IX 壹、緒論 1 一、海藻糖 1 1. 海藻糖的特性 1 2. 海藻糖的生合成途徑 3 二、海藻糖與DNA保護之關係 4 1. 活體外的DNA保護作用(in vitro) 4 2. 活體內的DNA保護作用(in vivo) 5 貳、研究目的 8 參、材料與方法 10 一、使用菌種 10 二、E.coli 之培養 10 三、DNA製備與純化 12 1. 質體DNA製備 12 2. 基因體DNA製備 13 四、蛋白質萃取與純化 13 1. 蛋白質誘導表達 13 2. 蛋白質粗萃取 14 3. 蛋白質純化 14 4. 蛋白質定量 15 五、蛋白質電泳(SDS-PAGE) 15 1. 鑄膠 15 2. 樣品處理 16 3. 染色與脫色 16 六、酵素活性測試 17 七、海藻糖萃取與分析 17 1. 萃取樣本製備 17 2. 樣品前處理 18 3. HPLC儀器操作 19 4. HPLC結果分析 20 八、UV照射 20 1. In vitro條件下照射 20 2. In vivo條件下─LB平盤照射法 21 3. In vivo條件下─菌液照射法 21 九、鹼性膠體電泳(Alkaline gel electrophoresis) 22 1. 鑄膠 22 2. 樣品處理 22 3. 電泳方法 23 4. 影像分析 24 5. 鹼性電泳計算理論: 24 十、彗星檢測法(comet assay) 25 1. 參考方法 25 2. 鑄膠 26 3. 電泳與呈色處理 27 肆、結果 28 一、確認海藻糖在細胞外(in vitro)對DNA的保護效果 28 二、E. coli 細胞內海藻糖合成酶(DRTS)的表達與海藻糖生合成 28 1. DRTS蛋白質誘導 28 2. DRTS純化與活性測試 28 3. 細胞內糖類萃取與HPLC分析 29 4. WT與E251A菌株之比較 30 三、確認海藻糖在活體細胞內(in vivo)對DNA的保護效果 30 1. 一般條件電泳分析(1% agarose,1X TAE) 30 2. 彗星檢測法電泳分析 31 3. 鹼性膠體電泳分析 32 4. WT與E251A菌株之比較 32 伍、討論 33 一、確認海藻糖在活體外(in vitro)對DNA的保護效果 33 二、E. coli 細胞內DRTS的表達與海藻糖的生合成 34 三、確認海藻糖在活體細胞內(in vivo)對DNA的保護效果 34 陸、參考文獻 37

    Alan D. Elbein, Y.T. Pan, Irena Pastuszak, and David Carroll (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13(4): 17R-27R
    Drauzio E. N. Rangel, Anne J. Anderson, Donald W. Roberts (2008) Evaluating physical and nutritional stress during mycelia growth as inducers of tolerance to heat and UV-B radiation in Metarhizium anisopliae conidia. Mycological research 112:1362-1372
    Hounsa CG, Brandt EV, Thevelein JM, Hohmann S, and Prior BA (1998) Role of trehalose in survival of Saccharomyces cerevisiae underosmotic stress. Microbiology 144: 671–680
    Hottiger T, Schmutz P and Wiemken A (1987) Heat-induced accumulation of futile cycling of trehalose in Saccharomyces cerevisiae. Journal of Bacteriology 169: 5518–5522
    J.E. Hallswort and H N . Maga (1994) Effects of KCl concentration on accumulation of acyclic sugar alcohols and trehalose in conidia of three entomopathogenic fungi. Letters in Applied Microbiology 18:8–11
    Jia-Hung Wang, et al. (2007) Role of the C-Terminal Domain of Thermus thermophilusTrehalose Synthase in the Thermophilicity, Thermostability, and Efficient Production of Trehalose. J Agric Food Chem 55:3435-3443
    José Carlos Pelielo de Mattos, et al. (2008) Alkaline Gel Electrophoresis Assay to Detect DNA Strand Breaks and Repair Mechanisms in Escherichia coli. Braz arch biol Technol 51(special):121-126
    Koichi Yoshinaga, et al. (1997) Protection by trehalose of DNA from radiation damage. Biosci Biotech Biochem 61(1):160-161
    Linda Chelico, Janna L. Haughian, Adrienne E. Woytowich, George G. Khachatourians (2005) Quantification of ultraviolet-C irradiation induced cyclobutane pyrimidine dimers and their removal in Beauveria bassiana conidiospore DNA. Mycologia 97(3):621–627
    Mathew J. Paulet, et al. (2008) Trehalose metabolism and signaling. Annu. Rev Plant Biol 59:417–41
    Motomasa Tanaka, et al. (2004) Trehalose alleviates polyglutamine- mediated pathology in a mouse model of Huntington disease. Nature Medicine 10:148–154
    Olga Kandror, Ann DeLeon, and Alfred L. Goldberg (2002) Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. PNAS 99:9727-32
    Oscar J. M. Goddijn, et al. (1997) Inhibition of Trehalase Activity Enhances Trehalose Accumulation in Transgenic Plants. Plant Physiol 113:181-190
    Owen White, et al. (1999) Genome Sequence of the Radioresistant Bacterium Deinococcus radiodurans R1. Science 286:1571-1577
    R. E. Zirkle and N. R. Krieg (1996) Development of a method based on alkaline gel electrophoresis for estimation of oxidative damage to DNA in Escherichia coli. J Appl Bacteriol 81:133-138
    Sambrook J., Fritsch E.F. and Maniatis T. (1989) Molecular cloning: a laboratory manual. 2. Ed, Cold Spring Harbor Laboratory Press, New York 1:1.25-1.28
    Simon Neumann, et al. (2009) DNA damage in storage cells of anhydrobiotic tardigrades. Comparative Biochemistry and Physiology, part A 153:425-429
    Steffen Hengherr, Arnd G. Heyer, Heinz-R. Ko¨ hler and Ralph O. Schill (2008) Trehalose and anhydrobiosis in tardigrades – evidence for divergence in responses to dehydration. FEBS 275:281-288
    Susanne G. L. Quaak, et al. (2010) Naked Plasmid DNA Formulation: Effect of Different Disaccharides on Stability after Lyophilisation. AAPS PharmSciTech 11(1):344-50
    Sutherland BM, Bennet PV and Sutherland JC (1996) DNA damage quantitation by alkaline gel electrophoresis. In: Henderson DS, ed. DNA Repair Protocols—Eukaryotic Systems. Totowa, New Jersey: Humana Press Inc.183–200
    Tina Schultz, Jing Liu, Paola Capasso, Ario de Marco (2007) The solubility of recombinant proteins expressed in Escherichia coli is increased by otsA and otsB co-transformation. Biochem Biophys Res Commun 335:234-239
    Yi-Shan Chen, Guan-Chiun Lee and Jei-Fu Shaw (2006) Gene Cloning, Expression, and Biochemical Characterization of a Recombinant Trehalose Synthase from Picrophilus torridus in Escherichia coli. J Agric Food Chem 54:7098–7104
    Yongqing Liu, et al. (2003) Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. PNAS 100:4191-4196
    Yuan T. Pan, et al. (2004) Trehalose synthase of Mycobacterium smegmatis: Purification, cloning, expression, and properties of the enzyme. Eur J Biochem 271: 4259–4269

    下載圖示
    QR CODE