簡易檢索 / 詳目顯示

研究生: 黃韻如
Yun-Ju Huang
論文名稱: 沙門氏菌之單株抗體的生產與分析研究
Production and Characterization of Monoclonal Antibodies Directed to Salmonella enterica
指導教授: 王玉麒
Wang, Yu-Chie
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 120
中文關鍵詞: 沙門氏菌單株抗體抗體
英文關鍵詞: Salmonella, monoclonal antibodies, antibodies
論文種類: 學術論文
相關次數: 點閱:184下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   沙門氏菌(Salmonella enterica)是造成全球食物中毒的最主要病原菌之一,不但威脅人類的健康,也會造成社會問題及經濟損失,因此發展快速、準確的沙門氏菌檢驗方法有其必要性。目前我國對沙門氏菌的標準檢驗方法是使用傳統的細菌培養法,缺點是完成檢驗所需的時間較長,且耗費較多的人力與空間。故本研究擬生產可辨識沙門氏菌的專一抗體,以利後續更新沙門氏菌的檢測方法,或是做為沙門氏菌的基礎研究工具之用。
      在本研究中,我們以沙門氏菌(Typhimurium血清型)的細胞壁溶出物或以超音波震盪處理的破菌樣品做為抗原,分別對小鼠進行免疫注射,經過三次細胞融合及選殖實驗後,總共篩選得到七株可辨識沙門氏菌的單株抗體:其中的一株(I-1)除了可辨識沙門氏菌之外,也會辨識各種測試的革蘭氏陽性菌及革蘭氏陰性菌;一株(II-1)除了可辨識沙門氏菌之外,也會辨識腸菌科中的大腸桿菌及志賀氏桿菌;兩株(III-1、III-2)會對沙門氏菌的Typhimurium和Enteritidis兩種血清型產生反應,但不會對其他腸菌科的細菌作用;另三株(IV-1、IV-2、IV-3)則只會辨識沙門氏菌中的Typhimurium血清型菌株。這七株抗體中,有四株(III-2、IV-1、IV-2、IV-3)的辨識抗原,經檢測後確定為lipopolysaccharide (LPS)上的O antigen:其中一株(III-2)專一辨識沙門氏菌的O12 antigen;其餘三株則是辨識O5 antigen。
      本研究所生產的七種單株抗體,依其專一性及結合力的差別,或可做為基礎研究的工具,如不同菌種的親緣關係探討或特定抗原的鑑定;亦可被應用於病原菌檢測方法的開發或功能性食品的生產。此外,我們也開發了一種新的免疫檢測方式,藉簡易的離心濃縮步驟,將細菌的偵測極限降低至104 CFU/mL,偵測時間僅需2.5 h以內。未來透過偵測敏感度的進一步提升,應有取代當前國家標準方法的潛力。

    Salmonella enterica is one of the main pathogens causing foodborne disease in the world. It not only threaten people’s health, but also result in social problems and economic losses. Therefore it is important to develop a rapid and accurate detection method for Salmonella. Currently, the national standard detection methods in Taiwan employ the traditional bacterial culture method, which is time consuming, labor extensive, and space required. Thus, the aim of the present study is to produce Salmonella-specific monoclonal antibodies, which may be used as tools for basic researches and for development of immunochemical detection method for Salmonella.
    To fulfille our aim, we used detergent-dissolved cell wall components or sonicated bacterial cells (Salmonella enterica, serovar Typhimurium) as antigens to immunize mice. After three independent cell fusion and cloning processes, we have successfully selected seven Salmonella-detecting monoclonal antibodies (MAbs). Among them, one (I-1) recognizes not only Salmonella but also all the other tested Gram-positive and Gram-negative bacteria; one (II-1) can detect Salmonella and two other enteric bacteria (Escherichia coli and Shigella sonnei); two (III-1 and III-2) can react with Salmonella enterica of two different serotypes (Typhimurium and Enteritidis), but not other bacteria in Enterobacteriaceae; while the last three (IV-1, IV-2 and IV-3) can only recognize the Typhimurium serotype of Salmonella enterica (Typhimurium-specific). Results of antigen scrutinization revealed that four of generated MAbs (III-2, IV-1, IV-2 and IV-3) detect recognize O antigens: MAb III-2 reacts with Salmonella O12 antigen, while the other three detect the O5 antigen.
    Based upon the difference in their specificity and antigen-binding capability, these seven MAbs might be applicable for basic researches, e.g. bacterial phylogenetic, structure and function, and pathogenesis studies. In addition, they may be used to develop bacterial detection methods or be used as supplement of functional foods. Presently, we have developed a microfuge tube-based immunoassay which can detect Salmonella at 104 CFU/mL within 2.5 h. By increasing the sensitivity of this assay, it has the potential to develop a new immunochemical detection method for Salmonella.

    摘要 1 Abstract 3 壹、緒論 5 一、食物中毒與發展沙門氏菌偵測法的必要性 5 二、沙門氏菌的介紹 7 三、目前沙門氏菌的偵測方法 12 四、研究目的 19 貳、材料與方法 21 一、抗原的製備 21 (1) 細菌的來源與培養條件 21 (2) 超音波破菌條件測試 22 (3) 細菌細胞壁抗原萃取 22 (4) 蛋白質定量 23 二、單株抗體的生產 24 (1) 小鼠免疫注射 24 (2) 細胞融合 24 (3) 融合瘤細胞的篩選 25 (4) 融合瘤細胞的選殖 26 三、單株抗體的純化與分析 27 (1) 單株抗體的濃縮與protien A/G親和性管柱純化 27 (2) 沙門氏菌單株抗體對不同菌株的專一性分析 28 (3) 沙門氏菌單株抗體isotyping 29 (4) 單株抗體能否吸附細菌表面的測試 29 (5) 抗原是否為LPS的分析 30 (6) 沙門氏菌單株抗體間的競爭性分析 32 (7) 沙門氏菌單株抗體的效價分析 32 四、沙門氏菌免疫偵測方法的探討 33 (1) Direct ELISA的分析 33 (2) Microfuge tube immunoassay的分析 34 參、結果 35 一、抗體的製造 35 (1) 抗原的製備 35 (2) 單株抗體的製造與篩選 37 二、抗體的特性分析 38 (1) 沙門氏菌單株抗體對不同菌株的專一性分析 38 (2) Isotyping 42 (3) 單株抗體能否吸附細菌表面的測試 42 (4) 抗原是否為LPS的分析 43 (5) 沙門氏菌單株抗體間的競爭性分析 44 (6) 沙門氏菌單株抗體的效價分析 45 三、沙門氏菌免疫偵測方法的探討 46 (1) Direct ELISA的分析結果 46 (2) Microfuge tube immunoassay的分析結果 46 肆、討論 48 一、單株抗體的製造──免疫注射的抗原種類與劑量探討 48 二、抗體的分析與應用潛力 50 (1) 第I群抗體──可辨識所有測試的菌種 51 (2) 第II群抗體──可辨識部份腸菌科菌種 52 (3) 第III群抗體──可專一辨識沙門氏菌但不具血清型專一性 53 (4) 第IV群抗體──可專一辨識沙門氏菌的O5抗原 56 (5) 沙門氏菌單株抗體的應用 57 三、沙門氏菌免疫偵測法的探討 58 伍、總結 61 陸、圖表 63 參考文獻 106 附錄 115 附錄一、縮寫對照表 115 附錄二、細菌培養液配方 117 附錄三、常用溶液配方 118

    Amaro M, Oaew S, Surareungchai W. 2012. Scano-magneto immunoassay based on carbon nanotubes/gold nanoparticles nanocomposite for Salmonella enterica serovar Typhimurium detection. Biosensors & bioelectronics

    Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H. 2000. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. International journal of systematic and evolutionary microbiology 50 Pt 4: 1563-89

    Blais BW, Martinez-Perez A. 2008. Detection of group D salmonellae including Salmonella Enteritidis in eggs by polymyxin-based enzyme-linked immunosorbent assay. Journal of food protection 71: 392-6

    Bravo D, Hoare A, Silipo A, Valenzuela C, Salinas C, et al. 2011. Different sugar residues of the lipopolysaccharide outer core are required for early interactions of Salmonella enterica serovars Typhi and Typhimurium with epithelial cells. Microbial pathogenesis 50: 70-80

    Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B. 2000. Salmonella nomenclature. Journal of clinical microbiology 38: 2465-7

    Busse M. 1995. Media for Salmonella. International journal of food microbiology 26: 117-31

    Buzby JC, Roberts T. 1997. Economic costs and trade impacts of microbial foodborne illness. World health statistics quarterly. Rapport trimestriel de statistiques sanitaires mondiales 50: 57-66

    Chaubal LH, Holt PS. 1999. Characterization of swimming motility and identification of flagellar proteins in Salmonella pullorum isolates. American journal of veterinary research 60: 1322-7

    Chen HY, Weng SF, Lin JW. 2000. Identification and analysis of the sap genes from Vibrio fischeri belonging to the ATP-binding cassette gene family required for peptide transport and resistance to antimicrobial peptides. Biochemical and biophysical research communications 269: 743-8

    Chiu TH, Pang JC, Hwang WZ, Tsen HY. 2005. Development of PCR primers for the detection of Salmonella enterica serovar Choleraesuis based on the fliC gene. Journal of food protection 68: 1575-80

    Chunglok W, Wuragil DK, Oaew S, Somasundrum M, Surareungchai W. 2011. Immunoassay based on carbon nanotubes-enhanced ELISA for Salmonella enterica serovar Typhimurium. Biosensors & bioelectronics 26: 3584-9

    Coburn B, Grassl GA, Finlay BB. 2007. Salmonella, the host and disease: a brief review. Immunology and cell biology 85: 112-8

    Cummings PL, Sorvillo F, Kuo T. 2010. Salmonellosis-related mortality in the United States, 1990-2006. Foodborne pathogens and disease 7: 1393-9

    Eriksson E, Aspan A. 2007. Comparison of culture, ELISA and PCR techniques for salmonella detection in faecal samples for cattle, pig and poultry. BMC veterinary research 3: 21

    Farzan A, Friendship RM, Dewey CE. 2007. Evaluation of enzyme-linked immunosorbent assay (ELISA) tests and culture for determining Salmonella status of a pig herd. Epidemiology and infection 135: 238-44

    Fehr T, Bachmann MF, Bucher E, Kalinke U, Di Padova FE, et al. 1997. Role of repetitive antigen patterns for induction of antibodies against antibodies. The Journal of experimental medicine 185: 1785-92

    Forbes SJ, Eschmann M, Mantis NJ. 2008. Inhibition of Salmonella enterica serovar typhimurium motility and entry into epithelial cells by a protective antilipopolysaccharide monoclonal immunoglobulin A antibody. Infection and immunity 76: 4137-44

    Fu J, Park B, Siragusa G, Jones L, Tripp R, et al. 2008. An Au/Si hetero-nanorod-based biosensor for Salmonella detection. Nanotechnology 19: 155502

    Germanier R, Furer E. 1971. Immunity in experimental salmonellosis. II. Basis for the avirulence and protective capacity of gal E mutants of Salmonella typhimurium. Infection and immunity 4: 663-73

    Ghosh AS, Melquist AL, Young KD. 2006. Loss of O-antigen increases cell shape abnormalities in penicillin-binding protein mutants of Escherichia coli. FEMS microbiology letters 263: 252-7

    Gracias KS, McKillip JL. 2004. A review of conventional detection and enumeration methods for pathogenic bacteria in food. Canadian journal of microbiology 50: 883-90

    Harvey RW, Price TH. 1980. Salmonella isolation with Rappaport's medium after pre-enrichment in buffered peptone water using a series of inoculum ratios. The Journal of hygiene 85: 125-8

    Hauser E, Junker E, Helmuth R, Malorny B. 2011. Different mutations in the oafA gene lead to loss of O5-antigen expression in Salmonella enterica serovar Typhimurium. Journal of applied microbiology 110: 248-53

    Holt PS, Chaubal LH. 1997. Detection of motility and putative synthesis of flagellar proteins in Salmonella pullorum cultures. Journal of clinical microbiology 35: 1016-20

    Hsueh PR, Teng LJ, Tseng SP, Chang CF, Wan JH, et al. 2004. Ciprofloxacin-resistant Salmonella enterica Typhimurium and Choleraesuis from pigs to humans, Taiwan. Emerging infectious diseases 10: 60-8

    Iino T. 1969. Genetics and chemistry of bacterial flagella. Bacteriological reviews 33: 454-75

    Johanns TM, Law CY, Kalekar LA, O'Donnell H, Ertelt JM, et al. 2011. Early eradication of persistent Salmonella infection primes antibody-mediated protective immunity to recurrent infection. Microbes and infection / Institut Pasteur 13: 322-30

    Koyuncu S, Haggblom P. 2009. A comparative study of cultural methods for the detection of Salmonella in feed and feed ingredients. BMC veterinary research 5: 6

    Krascsenicsova K, Piknova L, Kaclikova E, Kuchta T. 2008. Detection of Salmonella enterica in food using two-step enrichment and real-time polymerase chain reaction. Letters in applied microbiology 46: 483-7

    Kumar R, Surendran PK, Thampuran N. 2010. Evaluation of culture media for selective enrichment and isolation of Salmonella in seafood. Journal of AOAC International 93: 1468-71

    Kumar S, Balakrishna K, Batra HV. 2008. Enrichment-ELISA for detection of Salmonella typhi from food and water samples. Biomedical and environmental sciences : BES 21: 137-43

    Langone JJ. 1980. 125I-labeled protein A as a general tracer in immunoassay: suitability of goat and sheep antibodies. Journal of immunological methods 34: 93-106

    Leon-Velarde CG, Zosherafatein L, Odumeru JA. 2009. Application of an automated immunomagnetic separation-enzyme immunoassay for the detection of Salmonella enterica subspecies enterica from poultry environmental swabs. Journal of microbiological methods 79: 13-7

    Liebana S, Lermo A, Campoy S, Cortes MP, Alegret S, Pividori MI. 2009. Rapid detection of Salmonella in milk by electrochemical magneto-immunosensing. Biosensors & bioelectronics 25: 510-3

    Lu GZ, Tsang RS, Chau PY, Choi D, Law D, Ng MH. 1991. Characterization and application of a murine monoclonal antibody that reacts specifically with the serogroup D1 Salmonella. FEMS microbiology letters 64: 135-40

    Lu PL, Hwang IJ, Tung YL, Hwang SJ, Lin CL, Siu LK. 2004. Molecular and epidemiologic analysis of a county-wide outbreak caused by Salmonella enterica subsp. enterica serovar Enteritidis traced to a bakery. BMC infectious diseases 4: 48

    Luk JM, Tsang RS. 1997. Epitope specificity and application of Salmonella typhimurium O-antigen-specific monoclonal antibodies. Applied and environmental microbiology 63: 1192-4

    MacLennan CA, Gondwe EN, Msefula CL, Kingsley RA, Thomson NR, et al. 2008. The neglected role of antibody in protection against bacteremia caused by nontyphoidal strains of Salmonella in African children. The Journal of clinical investigation 118: 1553-62

    Magliulo M, Simoni P, Guardigli M, Michelini E, Luciani M, et al. 2007. A rapid multiplexed chemiluminescent immunoassay for the detection of Escherichia coli O157:H7, Yersinia enterocolitica, Salmonella typhimurium, and Listeria monocytogenes pathogen bacteria. Journal of agricultural and food chemistry 55: 4933-9

    Malorny B, Hoorfar J. 2005. Toward standardization of diagnostic PCR testing of fecal samples: lessons from the detection of salmonellae in pigs. Journal of clinical microbiology 43: 3033-7

    Marshall DG, Sheehan BJ, Dorman CJ. 1999. A role for the leucine-responsive regulatory protein and integration host factor in the regulation of the Salmonella plasmid virulence (spv ) locus in Salmonella typhimurium. Molecular microbiology 34: 134-45

    Mazumdar SD, Hartmann M, Kampfer P, Keusgen M. 2007. Rapid method for detection of Salmonella in milk by surface plasmon resonance (SPR). Biosensors & bioelectronics 22: 2040-6

    Murphy NM, McLauchlin J, Ohai C, Grant KA. 2007. Construction and evaluation of a microbiological positive process internal control for PCR-based examination of food samples for Listeria monocytogenes and Salmonella enterica. International journal of food microbiology 120: 110-9

    Nalbantsoy A, Karaboz I, Gurhan ID. 2010. Production of monoclonal antibody against Salmonella H: g,m flagellar antigen and potential diagnostic application. Hybridoma (Larchmt) 29: 419-23

    Nielsen B, Alban L, Stege H, Sorensen LL, Mogelmose V, et al. 2001. A new Salmonella surveillance and control programme in Danish pig herds and slaughterhouses. Berliner und Munchener tierarztliche Wochenschrift 114: 323-6

    Nnalue NA. 1999. All accessible epitopes in the Salmonella lipopolysaccharide core are associated with branch residues. Infection and immunity 67: 998-1003

    Nye KJ, Fallon D, Frodsham D, Gee B, Graham C, et al. 2002. An evaluation of the performance of XLD, DCA, MLCB, and ABC agars as direct plating media for the isolation of Salmonella enterica from faeces. Journal of clinical pathology 55: 286-8

    Pal A, Marshall DL. 2009. Comparison of culture media for enrichment and isolation of Salmonella spp. from frozen Channel catfish and Vietnamese basa fillets. Food microbiology 26: 317-9

    Paradis S, Boissinot M, Paquette N, Belanger SD, Martel EA, et al. 2005. Phylogeny of the Enterobacteriaceae based on genes encoding elongation factor Tu and F-ATPase beta-subunit. International journal of systematic and evolutionary microbiology 55: 2013-25

    Pathirana ST, Barbaree J, Chin BA, Hartell MG, Neely WC, Vodyanoy V. 2000. Rapid and sensitive biosensor for Salmonella. Biosensors & bioelectronics 15: 135-41

    Pengsuk C, Longyant S, Rukpratanporn S, Chaivisuthangkura P, Sridulyakul P, Sithigorngul P. 2011. Differentiation among the Vibrio cholerae serotypes O1, O139, O141 and non-O1, non-O139, non-O141 using specific monoclonal antibodies with dot blotting. Journal of microbiological methods 87: 224-33

    Popoff MY, Bockemuhl J, Gheesling LL. 2003. Supplement 2001 (no. 45) to the Kauffmann-White scheme. Research in microbiology 154: 173-4

    Raetz CR, Whitfield C. 2002. Lipopolysaccharide endotoxins. Annual review of biochemistry 71: 635-700

    Rijpkema S, Durrani Z, Lemercinier X, Jones C. 2004. Detection of O-acetylated Vi polysaccharide of Salmonella enterica subspecies typhi by enzyme immunoassay. Biologicals : journal of the International Association of Biological Standardization 32: 11-6

    Roberts IM, Jones SL, Premier RR, Cox JC. 1991. A comparison of the sensitivity and specificity of enzyme immunoassays and time-resolved fluoroimmunoassay. Journal of immunological methods 143: 49-56

    Roesler U, Szabo I, Matthies C, Albrecht K, Leffler M, et al. 2011. Comparing validation of four ELISA-systems for detection of Salmonella derby- and Salmonella infantis-infected pigs. Berliner und Munchener tierarztliche Wochenschrift 124: 265-71

    Ronholm J, Zhang Z, Cao X, Lin M. 2011. Monoclonal antibodies to lipopolysaccharide antigens of Salmonella enterica serotype Typhimurium DT104. Hybridoma (Larchmt) 30: 43-52

    Salam F, Tothill IE. 2009. Detection of Salmonella typhimurium using an electrochemical immunosensor. Biosensors & bioelectronics 24: 2630-6

    Samkutty PJ, Gough RH, Adkinson RW, McGrew P. 2001. Rapid assessment of the bacteriological quality of raw milk using ATP bioluminescence. Journal of food protection 64: 208-12

    Schnaitman CA. 1971. Effect of ethylenediaminetetraacetic acid, Triton X-100, and lysozyme on the morphology and chemical composition of isolate cell walls of Escherichia coli. Journal of bacteriology 108: 553-63

    Shin J, Kim M. 2008. Development of liposome immunoassay for salmonella spp. using immunomagnetic separation and immunoliposome. Journal of microbiology and biotechnology 18: 1689-94

    Sproer C, Mendrock U, Swiderski J, Lang E, Stackebrandt E. 1999. The phylogenetic position of Serratia, Buttiauxella and some other genera of the family Enterobacteriaceae. International journal of systematic bacteriology 49 Pt 4: 1433-8

    Su HP, Chiu SI, Tsai JL, Lee CL, Pan TM. 2005. Bacterial food-borne illness outbreaks in northern Taiwan, 1995-2001. Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy 11: 146-51

    Taylor WI, Schelhart D. 1971. Isolation of Shigellae. 8. Comparison of xylose lysine deoxycholate agar, hektoen enteric agar, Salmonella-Shigella agar, and eosin methylene blue agar with stool specimens. Applied microbiology 21: 32-7

    Thanes Gunasegaran XR, Marimuthu Kasi, Kathiresan Sathasivam, Sasidharan Sreenivasan, Sreeramanan Subramaniam. 2011. Isolation and identification of Salmonella from curry samples and its sensitivity to commercial antibiotics and aqueous extracts of Camelia sinensis (L.) and Trachyspermum ammi (L.). Asian Pacific Journal of Tropical Biomedicine: 266-69

    Thong SMaKL. 2010. Isolation and molecular sub typing of Salmonella Enterica from chicken, beef and street foods in Malaysia. Scientific Research and Essays 5: 2713-20

    Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C. 2010. An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnology advances 28: 232-54

    Wang L, Andrianopoulos K, Liu D, Popoff MY, Reeves PR. 2002. Extensive variation in the O-antigen gene cluster within one Salmonella enterica serogroup reveals an unexpected complex history. Journal of bacteriology 184: 1669-77

    Wang L, Wu CS, Fan X, Mustapha A. 2012. Detection of Escherichia coli O157:H7 and Salmonella in ground beef by a bead-free quantum dot-facilitated isolation method. International journal of food microbiology 156: 83-7

    Ward ES. 1993. Antibody engineering using Escherichia coli as host. Adv Pharmacol 24: 1-20

    Weintraub JA, Hilton JF, White JM, Hoover CI, Wycoff KL, et al. 2005. Clinical trial of a plant-derived antibody on recolonization of mutans streptococci. Caries research 39: 241-50

    Yamaura N, Uchiyama T, Terakado N. 1992. Production and epidemiological application of monoclonal antibody specific for Salmonella O5-antigen. The Kitasato archives of experimental medicine 65: 13-22

    Yang X, Wu Q, Zhang J, Xu X. 2008. [Rapid detection method of three types of bacterial pathogens in aquatic products established by multiplex PCR]. Wei sheng yan jiu = Journal of hygiene research 37: 602-5

    Ye X, Wang Y, Lin X. 2011. A gyrB-targeted PCR for rapid identification of Salmonella. Current microbiology 63: 477-83

    Zhao X, Hilliard LR, Mechery SJ, Wang Y, Bagwe RP, et al. 2004. A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proceedings of the National Academy of Sciences of the United States of America 101: 15027-32

    CDC(USA) 2006, “Salmonella annual Summary 2006”, http://www.cdc.gov/ncidod/dbmd/phlisdata/salmtab/2006/SalmonellaIntroduction2006.pdf

    CDC (USA) 2009, “Salmonella annual Summary Tables 2009”, http://www.cdc.gov/ncidod/dbmd/phlisdata/salmonella.htm

    CDC (USA) 2010, “Investigation update: Multistate outbreak of human Salmonella Enteritidis Infections Associated with shell eggs”, http://www.cdc.gov/salmonella/enteritidis/

    CDC (USA) 2012, “What are the most common food borne disease?”, http://www.cdc.gov/foodsafety/facts.html#mostcommon

    WHO 2002, “Foodborne disease, emerging”, http://www.who.int/mediacentre/factsheets/fs124/en/

    Institut Pasteur, 2007, “Antigenic formula of the salmonella serovars”, http://www.pasteur.fr/ip/portal/action/WebdriveActionEvent/oid/01s-000036-089

    行政院衛生署食品藥物管理局, “民國70年至100年台灣地區食品中毒發生狀況”, http://www.fda.gov.tw/content.aspx?site_content_sn=323

    行政院衛生署食品藥物管理局, “沙門氏桿菌 (Salmonella)”, http://www.fda.gov.tw/content.aspx?site_content_sn=1942

    下載圖示
    QR CODE