簡易檢索 / 詳目顯示

研究生: 李威憲
論文名稱: 射頻磁控濺鍍沉積氧化鋅鎵透明導電膜於可撓性塑膠基板之研究
Transparent conducting GZO films grown on flexible substrates by magnetron sputtering
指導教授: 周明
Jou, Min
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 68
中文關鍵詞: 氧化鋅磁控濺鍍透明導電膜灰關聯理論
英文關鍵詞: zinc oxide, magnetron sputtering, transparent conductive films, grey relational analysis
論文種類: 學術論文
相關次數: 點閱:130下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 所謂透明導電膜(TCO)是指在可見光範圍 (波長380-760nm),具有高光穿透率(>80%)和低電阻率(≦1×10-3 -cm)的薄膜,其被廣泛應用於各種科技產品,如:透明電極、太陽能電池、氣體感測器,壓電變換裝置和表面聲波器件。近年來,氧化鋅(ZnO)被應用在TCO上,由於它具有多樣的優點,在全球各相關產業受到了關注,例如ZnO的材質、與ITO和SnO2薄膜比較之下,不具有毒性,且成本低廉。
    可撓性塑膠基材上濺鍍透明導電膜,相較於玻璃基材有更多的優點,如:質量較輕,體積較小,耐衝擊且不易碎。在本研究中,使用磁控濺鍍並利用氧化鋅鎵(GZO)製備透明導電膜(Ga2O3比例是大约3 wt.%)。本文使用GZO薄膜的最佳參數化設計與灰關聯分析結合的田口法。藉由田口法參數設計, 實驗流程為L9正交排列組合。其中可變的參數(RF功率、濺鍍壓力、基材溫度和沉積時間)的作用對GZO薄膜的光、電性質,結構與表現形態進行分析。
    在經由灰關聯理論的驗證分析,得到一組灰關聯實驗參數改善78.84%的電阻率,但是光穿透率則稍稍降低。實驗結果分別顯示濺鍍功率和濺鍍壓力是在實驗過程中最重要因子。實驗結果證明,灰關聯實驗參數能夠確實的提升透明導電膜的性質。

    Transparent conducting oxide (TCO) film with optical transmission of more than 80% in the visible region and resistivity of less than 10-3 -cm is used in various technological fields such as transparent electrodes, solar cells, gas sensors, piezoelectric transducers and surface acoustic wave devices. Recently, zinc oxide (ZnO), an alternative TCO material, has received considerable attention due to its various advantages, such as its abundance in nature, non-toxicity and good stability in hydrogen plasma processes as compared to ITO and SnO2 films.
    Transparent conducting films deposited on polymer substrates have many merits compared with those deposited on conventional glass substrate, such as their light weight, small volume, impact resistance, ease of transport and flexibility. In this study, gallium-doped zinc oxide (GZO) transparent conductive thin films were deposited on inexpensive polyethylene terephthalate (PET) substrates by radio frequency (rf) magnetron sputtering using the GZO ceramic target (the Ga2O3 contents are approximately 3 wt.%). This paper presents an effective method for the optimization of the deposition process parameters of GZO thin films by using the Taguchi method combined with the grey relational analysis. Based on the Taguchi quality design concept, an L9 orthogonal array table was chosen for the experiments.
    The effects of various process parameters (RF power, sputtering pressure, substrates temperature and deposition time) on electrical, structural, morphological and optical properties of GZO films were investigated. In the confirmation runs, when using grey relational analysis, improvement of 78.84% was obtained in electrical resistivity, but in visible range transmittance was decreased slightly. The experimental results revealed that RF power and sputtering pressure were the most influential factor on the deposition process, respectively. Experimental results are provided to illustrate the effectiveness of this approach.

    中文摘要...............................i 英文摘要.............................iii 致謝.................................iv 目錄..................................v 表目錄.............................viii 圖目錄...............................ix 第一章緒論.............................1 1.1 前言..............................1 1.2 研究目的與動機.....................1 第二章基礎理論與文獻回顧.................4 2.1 透明導電膜.........................4 2.2 電漿生成理論........................5 2.3 氧化鋅鎵透明導電膜之性質...................................6 2.3.1 氧化鋅鎵的性質與結構...........................................................6 2.3.2 氧化鋅鎵導電性質...................................................................7 2.3.3 氧化鋅鎵光學性質...................................................................8 2.3.4 氧化鋅鎵薄膜的製備方法.......................................................8 2.4 氧化鋅鎵薄膜文獻回顧......................................................................8 2.4.1 射頻功率對氧化鋅鎵薄膜性質影響.....................................10 2.4.2 濺鍍壓力對氧化鋅鎵薄膜性質影.........................................10 2.4.3 製程溫度對氧化鋅鎵薄膜性質影.........................................11 2.4.4 膜厚對氧化鋅鎵薄膜性質影響.............................................11 2.5 磁控濺鍍機制....................................................................................12 2.5.1 濺鍍原理.................................................................................12 2.5.2 射頻濺鍍.................................................................................13 2.5.3 磁控濺鍍.................................................................................14 2.6 薄膜沉積理論....................................................................................15 2.6.1 薄膜成核現象.........................................................................15 2.6.2 鍍層微觀結構.........................................................................17 2.7 田口式實驗規劃法............................................................................18 2.7.1 因子的分類.............................................................................19 第三章實驗方法與步驟.................................................................................21 3.1 實驗流程............................................................................................21 3.2 實驗材料............................................................................................23 3.2.1 靶材.........................................................................................23 3.2.2 基板.........................................................................................23 3.2.3 工作氣體.................................................................................23 3.3 實驗設備............................................................................................23 3.4 實驗步驟............................................................................................26 3.4.1 基板前處理.............................................................................26 3.4.2 薄膜濺鍍步驟.........................................................................26 3.5 實驗規劃............................................................................................27 3.6 薄膜分析及量測................................................................................29 3.6.1 薄膜厚度量測.........................................................................29 3.6.2 薄膜電性量測.........................................................................29 3.6.3 薄膜結構分析.........................................................................31 3.6.4 薄膜表面分析.........................................................................32 3.6.5 薄膜光穿透率分析.................................................................33 3.6.6 薄膜表面形態分析.................................................................34 第四章結果與討論.........................................................................................35 4.1 薄膜表面形態與結構分析................................................................35 4.2 薄膜沉積速率....................................................................................38 4.3 薄膜電性分析....................................................................................40 4.4 薄膜光學性質分析............................................................................42 4.5 灰關聯分析與驗證實驗....................................................................44 4.5.1 灰關聯分析.............................................................................44 4.5.2 驗證實驗.................................................................................47 4.6 改變射頻功率....................................................................................50 4.6.1 薄膜表面結構分析.................................................................51 4.6.2 薄膜XRD 繞射分析...............................................................52 4.6.3 薄膜電性分析.........................................................................53 4.6.4 薄膜光學性質分析.................................................................54 4.7 改變濺鍍壓力....................................................................................55 4.7.1 薄膜表面結構分析.................................................................56 4.7.2 薄膜XRD 繞射分析...............................................................57 4.7.3 薄膜電性分析.........................................................................58 4.7.4 薄膜光學性質分析.................................................................59 第五章結論.....................................................................................................61 參考文獻...........................................................................................................62

    [1] Hyungduk Ko, Weon-Pei Tai, Young-Sung Kim, "Growth of Ai-doped ZnO thin films by pulsed DC magne tron sputtering", J. Cry. Grow., 277, pp.352, (2005).
    [2] B.Chapman, "Glow Discharge Processes", John Wiley & Sons.Inc.92 N.Y. ,chap.6, (1980).
    [3] T.Minami, H.Sato, K.Ohashi, T.Tomofuji and S.Takata, "Conduction mechanism of highly conductive and transparent zinc oxide thin films prepared by magnetron sputtering", J. Cry. Grow., 117, pp.370, (1992).
    [4] K.Wasa, "Handbook of Sputter Deposition Technology", pp.98, (1992).
    [5] C. Agashe, O. Kluth, J. Hupkes, U. Zastrow, B. Rech, "Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films ", J. Appl. Phys. 95,4, pp.1911, (2004).
    [6] G. Granqvist, Appl. Phys. , A57, pp.19, (1993).
    [7] K. Ellmer, F. Kudella, R. Mientus, R. Schieck, S. Friechter, Thin Solid Films., 247, pp.15, (1994).
    [8] B. Szyszka, Thin Solid Films., 351, pp.164, (1999).
    [9] Z.L. Pei, X.B. Zhang, G.P. Zhang, J. Gong, ”Transparent conductive ZnO:Al thin films deposited on flexible substrates prepared by direct current magnetron sputtering” Thin Solid Films., 497, pp.20-23, (2006).
    [10]Yun M. Chung , Chang S. Moon, “The low temperature synthesis of Al doped ZnO films on glass and polymer using magnetron co-sputtering: Working pressure effect” Surface & Coatings Technology., 200, pp.936-939, (2005).
    [11] 李玉華,”透明導電膜及其應用”,科儀新知,第十二卷第一期,pp.94-102,(1990).
    [12] J. L. Vossen, “Transparent Conducting Films”, Physics of Thin Film, Vol.9, pp.1-64, (1977).
    [13]A. Suzuki, T. Matsushita, T. Aoki, A. Mori, M. Okuda, “Highly conducting transparent indium tin oxide films prepared by pulsed laser deposition”, Thin SolidFilms, Vol.411, pp.23-27, (2002).
    [14] T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes”, Semiconductor Science Technology, Vol.20, pp.35-44, (2005).
    [15] B. G. Lewis and D. C. Paine, “Applications and Processing of Transparent Conducting Oxides”, MRS Bulletin, Vol.25, pp.22-27, (2000).
    [16] R. Wendt, K. Ellmer, K. Wiesemann, “Thermal power at a substrate during ZnO:Al thin film deposition in a planar magnetron sputtering system”, Journal of Applied.Physics, Vol.82, pp.2115-2122, (1997).
    [17]H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, and T. Yao, “Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy”, Applied Physics Letters., Vol.77, pp.3761-3763, (2000).
    [18]V. Assuncao, E. Fortunato, A. Marques, A. Goncalves, I. Ferreira, H. Aguas, R.Martins, “New challenges on gallium-doped zinc oxide films prepared by r.f. magnetron sputtering”, Thin Solid Films, Vol.442, pp.102-106, (2003).
    [19]D. Paraguay, J. Morales, L. Estrada, E. Andrade, M. Miki-Yoshida, “Influence of Al,In, Cu, Fe and Sn dopants in the microstructure of zinc oxide thin films obtained by spray pyrolysis”, Thin Solid Films, Vol.366, pp.16-27, (2000).
    [20] E. L. Paradis and A. J. Shuskus, “RF Sputtered Epitaxial ZnO Films on Sapphire for Integrated Optics”, Thin Solid Films, Vol.38, pp.131-141, (1976).
    [21] P. Nunes, E. Fortunato, R. Martins, “Influence of the annealing conditions on the properties of ZnO thin films”, The International Journal of Inorganic Materials, Vol. 3, pp.1125-1128, (2001).
    [22] T. Minami, “New n-type transparent conducting oxides”, MRS Bulletin, Vol.25, pp.38, (2000).
    [23]H. Jianhua and R. G. Gordon, “Atmospheric pressure chemical vapor deposition of gallium doped zinc oxide thin films from diethyl zinc, water, and triethyl gallium”,Journal of Applied Physics, Vol.72, pp.5381-5392, (1992).
    [24] E. S. Shim. et al., “Effect of The Variation of Films Thickness on The Structural and Optical Properties of ZnO Thin films Deposition on Sapphire Substrate Using PLD”,Apply Surface Science., Vol.186, pp.474-476, (2002).
    [25] Tadatsugu Minami, Satoshi Ida, Toshihiro Miyata, “High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation”, Thin Solid Films, Vol.416, pp.92-96, (2002).
    [26] P. K. Songa, M. Watanabe, M. Kon, A. Mitsui, Y. Shigesato, “Electrical and optical properties of gallium-doped zinc oxide films deposited by dc magnetron sputtering”, Thin Solid Films, Vol.411, pp.82-86, (2002).
    [27] T. Minami, H. Sato, T. Sonoda, H. Nanto, S. Takata, “Influence of substrate and target temperature on properties of transparent and conductive doped ZnO thin films prepared by RF magnetron sputtering, Thin Solid Films, Vol.171, pp.307-311, (1989).
    [28] T. H. Kim, S.H. Jeong, I. S. Kim, S. S. Kim, B. T. Lee, “Magnetron sputtering growth and characterization of high quality single crystal Ga-doped n-ZnO thin films”, Semiconductor Science Technology, Vol.20, pp.43-46, (2005).
    [29] C. S. Hong, H. H. Park, J. Moon, H. H. Park, “Effect of metal (Al, Ga, and In)-dopants and/or Ag-nanoparticles on the optical and electrical properties of ZnO thin films”, Thin solid films, Vol.515, pp.957-960,(2006).
    [30] T. Minami, S. Ida, T. Miyata, “High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation”, Thin Solid Films, Vol.416, pp.92-96, (2002).
    [31]Q. B. Ma, Z. Z. Ye, H. P. He, S. H. Hu, J. R. Wang, L. P. Zhu, Y. Z. Zhang, B. H. Zhao, “Structural, electrical, and optical properties of transparent conductive ZnO:Ga films prepared by DC reactive magnetron sputtering”, Journal of Crystal Growth, Vol.304, pp.64–68, (2007).
    [32]Q. B. Ma, Z. Z. Ye, H. P. He, J. R. Wang, L. P. Zhu, B. H. Zhao, “Preparation and characterization of transparent conductive ZnO:Ga films by DC reactive magnetron sputtering”, Materials Characterization, Vol.59, pp.124-128, (2008).
    [33]X. Yua, J. Ma, F. Ji, Y. Wang, X. Zhang, C. Cheng, H. Ma, “Effects of sputtering power on the properties of ZnO:Ga films deposited by r.f. magnetron-sputtering at low temperature”, Journal of Crystal Growth, Vol.274, pp.474-479, (2005).
    [34]Q. B. Ma, Z. Z. Ye, H. P. He, L. P. Zhu, B. H. Zhao, “Effects of deposition pressure on the properties of transparent conductive ZnO:Ga films prepared by DC reactive magnetron sputtering”, Materials Science in Semiconductor Processing, Vol.10, pp.167–172, (2007).
    [35]V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, M.E.V. Costa, R. Martinsa, “Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature”, Thin Solid Films, Vol.427, pp.401–405, (2003).
    [36]X. Yu, J. Ma, F. Ji, Y. Wang, X. Zhang, H. Ma “Preparation and properties of ZnO:Ga films prepared by r.f. magnetron sputtering at low temperature”, Applied Surface Science, Vol.239, pp.222-226, (2005).
    [37]H. L. Hartnagel, A. L. Dawar, A. K. Jain and C. Jagadish, “2.7.3 ZnO: sputtering”, Semiconducting Transparent Thin Films, Institute of Physics Publishing Bristol and Philadelphoa, pp.116-122.
    [38]D. H. Zhang, T. L. Yang, J. Ma, Q. P. Wang, R.W. Gao, and H. L. Ma,“Preparation of transparent conducting ZnO:Al films on polymer substrates by r.f. magnetron sputtering”, Applied Surface Science, 158, 2000, pp.43-48.
    [39] T. Minami, H. Sato, T. Sonoda, H. Nanto, and S. Takata, “Influence of substrate and target temperatures on properties of transparent and conductive doped ZnO thin films prepared by R.F. magnetron sputtering”, Thin Solid Films, 171, 1989, pp.307-311.
    [40]M. J. Lee, J. Lim, J. Bang, W. Lee, J. M. Myoung, “Effect of the thickness and hydrogen treatment on the properties of Ga-doped ZnO transparent conductive films”, Applied Surface Science, Vol.255, pp.3195-3200, (2008).
    [41]X. Yua, J. Ma, F. Jia, Y. Wang, C. Cheng, H. Ma, “Thickness dependence of properties of ZnO:Ga films deposited by rf magnetron sputtering”, Applied Surface Science, Vol.245, pp.310-315, (2005).
    [42] E. Fortunato, L. Raniero, L.Silva, A.Goncalves, A. Pimentel ,P. Barquinha, H. Aguas, L.Pereira, G. Goncalves, I. Ferreira, E. Elangovan, R. Martins, “Highly stable transparent and conducting gallium-doped zinc oxide thin films for photovoltaic applications”, Solar Energy Materials & Solar Cells, Vol92, pp.1605-1610, (2008).
    [43] T. F. Ko, “Apply ZnO buffer layer to improve the optoelectronic properties of ZnO:Al transparent conducting oxide”, Master thesis, NTUT (2007)
    [44]M. Arbab, “The base layer effect on the d.c. conductivity and structure of direct current magnetron sputtered thin films of silver”, Thin Solid Films, 381, 2001, pp.15-21.
    [45] S. M. Rossnagel et al., “Handbook of Plasma Processing Technology’, Noyes Publications, Park Ridge, New Jersey, U.S.A., (1982).
    [46] T. Minami, S. Ida, T. Miyata, “High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation”, Thin Solid Films, Vol.416, pp.92-96 (2002).
    [47] S. S. Wang, “Gallium-doped ZnO thin films grown by radio frequency magnetron Sputtering”, Master thesis, LungHwa (2009)
    [48] B. Chapman, ”Glow Discharge Processes”, John Wiley and Sons, New York, (1980).
    [49] J. Venables, “Nucleation and Growth of Thin films”, Rep. Prog. Physics., Vol.47, pp.399-459, (1984).
    [50] J. A. Thronton, “Influence of Apparatus Geometry and Deposition Conditions on the Structure and Topography of Thick Sputtered Coatings”, Journal of Vacuum Science and Technology, Vol.11, pp.666, (1974).
    [51] J. R. Phillip, “Techniques For Quality Engineering”, McGraw-Hill, pp.18-33 (1989).
    [52]Y. Zhang, G. Du, D. Liu, X. Wang, Y. Ma, J. Wang, J. Yin, X. Yang, X. Hou, S. Yang, “Crystal growth of undoped ZnO films on Si substrates under different sputtering conditions”, Journal of Crystal Growth, Vol.243, pp.439-443, (2002).
    [53]H. K. Tsai, “Influence of fabrication parameters on the performance of AZO films grown by RF magnetron sputtering”, Master thesis, Tatung university (2006).
    [54] E. Fortunato, V. Assuncao, A. Goncalves, A. Marques, H. Aguas, L. Pereira, I. Ferreira, P. Vilarinho , R. Martins ba, “High quality conductive gallium-doped zinc oxide films deposited at room temperature”, Thin Solid Films, Vol.451–452, pp.443–447, (2004)
    [55]D. R. Sahu, J. L. Huang, “The property of ZnO/Cu/ZnO multilayer films before and after annealing in the different atmosphere”, Thin Solid Film, Vol.516, pp.208-211, (2007).

    下載圖示
    QR CODE