簡易檢索 / 詳目顯示

研究生: 曾仁岡
Jen-Kang Tseng
論文名稱: 基於可變大小分類器及比例式權重之方向性色彩插補演算法設計
Design of Directional Color Interpolation Based on Variable-Size Classifiers and Proportional Weights
指導教授: 蘇崇彥
Su, Chung-Yen
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 79
中文關鍵詞: 色彩插補解馬賽克貝爾圖形數位相機
英文關鍵詞: demosaicking, color interpolation, demosaicing
論文種類: 學術論文
相關次數: 點閱:73下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,為了減少產品的體積及製作成本,大部分消費型數位相機都採用前方覆蓋一層彩色濾光陣列(CFA)的單一感光元件來擷取影像。由於CFA的結構,每一個像素都只能得到紅、藍、綠三原色其中一個顏色的資訊。色彩插補演算法主要的目的即是利用鄰近像素所得到的顏色資訊來估測CFA影像所失去的顏色。雖然目前許多色彩插補演算法已被提出,然而在計算複雜度與插補結果上無法同時得到令人滿意的結果。有鑑於此,本論文提出一個低計算複雜度且可以有效提升插補品質的演算法。此方法主要有四個特點,分別為,利用七個係數取代原有五個係數的方向低通濾波器來插補綠色,利用可變大小的方向濾波器來尋找影像邊緣的部分,利用比例式的權重插補綠色,以及使用改良式的中值濾波來改善插補後的影像。我們除了使用常見的Kodak 24張圖片之外,還使用其他兩組色彩飽和度較高的影像來進行分析和比較。實驗結果證實,本論文所提出的色彩插補演算法,在PSNR值或是SCIELab等客觀的評估中可以得到比近期所提出的演算法還要好的結果,而在主觀的視覺評估方面也可以得到不錯的視覺效果。

    Recently, in order to reduce the product size and the manufacturing cost, most commercial digital cameras use a single sensor covered with a color filter array (CFA) to capture the scene. Based on the CFA structure, each sensor pixel only samples one of the three primary color values and the other two are missing. The purpose of demosaicking algorithm is to estimate the missing two color values by neighboring samples. Although many demosaicking algorithms have been proposed, they can not satisfy both the computational complexities and the quality of reconstructed images at the same time. Because of this reason, we propose a new algorithm which is low complexity and effective to improve image quality. This method has four characteristics which are seven-coefficient FIR filter, variable-size classifiers, proportional weighting sum of the candidates, and modified median filter refinement.
    In our experiment, we use not only the 24 Kodak testing images but also two sets of high saturated images to demonstrate the performance. Experimental results show that the proposed algorithm can obtain higher PSNR results and better visual quality than previous demosaicing techniques.

    摘 要 ii Abstract iii 誌  謝 iv 目  錄 i 圖 目 錄 iii 表 目 錄 v 第一章  緒論 1 1.1. 研究背景 1 1.2. 研究動機 4 1.3. 論文架構 7 第二章  文獻探討 8 2.1. 非適應性插補演算法 9 2.1.1. 雙線性插補演算法 9 2.1.2. 固定色調插補演算法(ECI) 10 2.1.3. 高效的訊號相關演算法 11 2.2. 適應性插補演算法 13 2.2.1. 可適應性色彩平面插補演算法(ACPI) 16 2.2.2. 利用不同色彩差值的插補演算法 17 2.2.3. 利用方向濾波並歸納方向的插補演算法 (DFPD) 20 2.2.4. 利用邊緣偵測以及異次投影之色彩插補演算法 (DCFA) 21 2.2.5. 利用小波轉換之高效插補演算法 25 第三章  利用不同大小的分類器及比利式權重之色彩插補演算法 28 3.1. 插補綠色值 28 3.1.1. 利用方向濾波器插補綠色平面 28 3.1.2. 利用不同視窗大小的分類器 31 3.1.3. 利用比例式權重的概念來插補綠色 34 3.2. 插補紅色及藍色平面 35 3.3. 優化插補平面 37 第四章  實驗數據與模擬結果 40 4.1. 實驗流程 42 4.2. PSNR值及CIELab比較 43 4.2.1. PSNR值比較 43 4.2.2. S-CIELab值比較 46 4.3. 演算法之各特點分析 49 4.3.1. 利用七個係數的低通濾波器來插補綠色 49 4.3.2. 使用不同大小的分類器來分類邊緣方向 50 4.3.3. 使用比例式權重來插補綠色 51 4.3.4. 使用改良式的中值濾波做影像加強 53 4.4. 重建影像視覺比較 53 4.5. 計算複雜度分析 58 4.6. 第二組及第三組圖片之比較 59 4.6.1. 第二組測試圖片之比較 60 4.6.2. 第三組測試圖片之比較 65 4.6.3. 重建影像視覺比較 68 4.6.4. 第二組及第三組圖片之比較分析 72 第五章  結論與未來工作 73 參考文獻 75 自  傳 78 學術成就 79

    [1] B. E. Bayer, “Color imaging array,” U.S. Patent 3 971 065, Jul. 1976.
    [2] R. Rajeev, E. Wesley, L. Griff, and S. Williams, “Demosaicking methods for Bayer color arrays,” Journal of Electronic Imaging, vol. 11, no. 3, pp. 306-315, July 2002.
    [3] W.-C. Kao, L.-Y. Chen, and S.-H. Wang, “Tone reproduction in color imaging systems by histogram equalization of macro edges,” IEEE Trans. Consumer Electronics, vol. 52, no. 2, pp. 682 - 688, May 2006.
    [4] X. Li, “Demosaicing by successive approximation,” IEEE Trans. Image Process., vol. 14, no. 3, pp. 370-379, March 2005.
    [5] C.-Y. Su, “Highly effective iterative demosaicing using weighted-edge and color-difference interpolation,” IEEE Trans. Consumer Electronics, vol. 52, no. 2, pp. 639-645, May 2006.
    [6] J. E. Adams, “Interactions between color plane interpolation and other image processing functions in electronic photography,” Proc. SPIE 2416, pp. 144–151, 1995.
    [7] S.-C. Pei, and I.-K. Tam, “Effective color interpolation in CCD color filter arrays using signal correlation,” IEEE Trans. Circuits Systems Video Technol., vol. 13, no. 6, pp. 503-513, Jun. 2003.
    [8] J. F. Hamilton Jr. and J. E. Adams, “Adaptive color plane interpolation in single color electronic camera,” U. S. Patent 5 629 734, May 1997.
    [9] K.-H. Chung, and Y.-H. Chan, “Color demosaicing using variance of color differences,” IEEE Trans. Image Process., vol. 15, no. 10, pp. 2944-2955, Oct 2006.
    [10] D. Menon, S. Andriani, and G. Calvagno, “Demosaicing with directional filtering and a posteriori decision,” IEEE Trans. Image Process., vol. 16, no. 2, pp. 132–141, Jan. 2007.
    [11] K.-L. Chung, W.-J. Yang, W.-M. Yan, and C.-C. Wang, “Demosaicing of color filter array captured images using gradient edge detection masks and adaptive heterogeneity-projection,” IEEE Trans. Image Process., vol. 17, no. 12, pp.2356–2367, Dec. 2008.
    [12] C.-Y. Su, and W.-C. Kao, “Effective demosaicing using subband correlation,” IEEE Trans. Consumer Electronics, Vol, 55, PP. 199 – 204, no.1, April 2009.
    [13] R. H. Hibbard, “Apparatus and method for adaptively interpolating a full color image utilizing luminance gradients,” U.S. Patent 5 382 976, 1995.
    [14] C. Y. Tsai and K. T. Song, “Heterogeneity-projection hard-decision color interpolation using spectral-spatial correlation,” IEEE Trans. Image Process., vol. 16, no. 1, pp. 78–91, Jan. 2007.
    [15] J. E. Adams, “Design of practical color filter array interpolation algorithms for digital cameras, part 2,” in Proc. IEEE Int. Conf. Image Processing, vol. 1, pp. 488–492, Oct. 1998.
    [16] B. K. Gunturk, Y. Altunbasak, and R. M. Mersereau, “Color plane interpolation using alternating projections,” IEEE Trans. Image Process., vol. 11, no. 9, pp. 997–1013, Sep. 2002.
    [17] E. Dubois, “Frequency-domain methods for demosaicing of bayer-sampled color images,” IEEE Signal Process. Lett., vol. 12, no. 12, pp.847–850, Dec. 2005.
    [18] W. Lu, and Y.-P. Tan, “Color filter array demosaicing: New method and performance measures,” IEEE Trans. Image Process., vol. 12, no. 10, pp. 1194-1210, Oct. 2003.
    [19] X. Li, B. Gunturk, and L. Zhangc, “Image demosaicing: a systematic survey,” Proc. SPIE, vol. 6822, Jan. 2008.
    [20] F. Zhang, X. Wu, X. Yang, W. Zhang, and L. Zhang, “Robust color demosaicking with adaptation to varying spectral correlations,” IEEE Trans. Image Process., vol. 18, no. 12, pp. 2706 - 2717, Dec. 2009.
    [21] Kodak test images and the demosaicing code of successive approximation. [Online]. Available at http://www.csee.wvu.edu/~xinl/demo/demos aic.html.
    [22] S-CIELab Metric (2003). [Online]. Available at http://white.stanford. edu/~brian/scielab/scielab.html
    [23] Steve’s DIGICAM. [Online]. Available at http://www.steves-digicams. com/camera-reviews/nikon/d2x-slr/nikon-d2x-slr-review-17.html.
    [24] Panasonic. [online] Available at http://www.panasonic.net/avc/camcord er/hd/global/products/hdc-hs9/highpicture.html.
    [25] Mobile01. [online] Available at http://www.mobile01.com/.
    [26] NetGeo Wallpapers Website. [online] Available at http://ngm.national geographic.com/wallpaper/download.

    下載圖示
    QR CODE