簡易檢索 / 詳目顯示

研究生: 張國偉
論文名稱: 鎳在銀/矽(111)-(√3 × √3 )表面上聚集分布和熱力衍化的研究
The condensation, distribution, and the phase transformation of Ni on Ag/Si(111)-(√3×√3) surfaces
指導教授: 傅祖怡
Fu, Tsu-Yi
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 90
中文關鍵詞: 銀/矽-(√3 × √3 )
英文關鍵詞: Ni, Si, Ag, Ag/Si-(√3 × √3 )
論文種類: 學術論文
相關次數: 點閱:80下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蒸鍍鎳原子於銀/矽(111)-(√3×√3)表面上,變化其鍍量和溫度,並藉由STM觀測鎳原子的聚集分布和熱力衍化。固定溫度於室溫改變鍍量,鎳原子會形成鎳原子團,若鍍量大於0.2 ML,部分鎳原子團會合併形成鎳島,且鎳原子團與鎳島均隨鍍量上升而逐漸變大。
    固定鍍量改變溫度,含鎳原子團在300℃以下會逐漸向銀島邊緣聚集,且於300℃逐漸形成外型為幾何形的Ni2Si-δ(2×1)島,並於200~300℃有往塊材擴散的行為,由銀島交界處鑽入裡層,使得表面鎳鍍量下降,於400℃銀原子開始退吸附,使原先被銀覆蓋住的鎳矽化合物變成NiSi2再度露出表面。
    升溫至600、700℃時,銀原子已經完全退吸附,而鎳原子仍在矽(111)表面上,其表面形貌主要為,矽(111)-(7×7)、原子團、鎳矽1×1-RC和NiSi2(B)(鍍量超過1.4 ML才會出現),並藉由STS得知,鎳矽1×1-RC的電性頗為類似N型半導體,而NiSi2(B)類似於金屬電性。

    The condensation, distribution, and the phase transformation of Ni on Ag/Si(111)-(√3×√3) surfaces were investigated by STM. When the temperature was fixed at room temperature(RT) and the coverage of Ni deposition was controlled, we found the Ni clusters and Ni islands formed. When the coverage of Ni was smaller than 0.2 manolayer(ML), only Ni clusters were formed. As the coverage was increasing, the size of Ni clusters and islands was increasing.
    When the coverage of Ni deposition was fixed and the annealing temperature was controlled, the structure transformation of Ni-included clusters and islands was found. When the temperature was below 300℃, clusters condensated on the step edge of Ag/Si(111)-(√3×√3) substrates. The Ni2Si-δ(2×1) islands with geometric shape formed after 300℃annealing. When the temperature ranged from 200℃ to 300℃, Ni diffused into the inner layer from boundary of Ag/Si(111)-(√3×√3). The phenomenon leaded to Ni coverage on the surface decreasing. Ni silicide transforms to NiSi2 at 400℃; meanwhile, desorption of partial Ag atoms results in NiSi2 appearing on the surface again.
    Ni-included structures still appeared on the Si(111) surface after all Ag atoms had desorbed at 600℃. The surface topography included Si(111)-(7×7), Ni-included clusters, 1×1-ring cluster(RC) silicide, and NiSi2(B) which was found at Ni coverage over 1.4 ML. Electric properties of 1×1-RC silicide is very similar to N type semiconductors, and electric properties of NiSi2(B) is similar to conductors by STS.

    中文摘要 i 英文摘要 ii 目錄 iii 第一章 緒論 1 第二章 實驗原理與方法 3 2-1 STM基本原理 3 2-1.1 穿隧效應 3 2-1.2 侷域電子態密度 6 2-2 STM操作原理 8 2-2.1 定電流模式 9 2-2.2 定高度模式 10 2-3 掃描穿隧能譜術原理 11 2-3.1 電流-電壓能譜 11 2-3.2 距離-電壓能譜 11 2-4 低能量電子繞射原理 12 第三章 實驗儀器 14 3-1實驗裝置圖 14 3-2 超高真空系統 15 3-2.1 (油封式)機械幫浦 16 3-2.2 渦輪分子幫浦 17 3-2.3 離子幫浦 18 3-2.4 鈦昇華幫浦 19 3-3 真空壓力計 20 3-3.1 派朗尼真空計 20 3-3.2 離子真空計 23 3-4離子槍濺射系統 26 3-5蒸鍍系統 29 3-5.1 電子束蒸鍍鎗 29 3-5.2 K-cell蒸鍍鎗 30 3-6 掃描式穿隧電子顯微鏡 31 3-6.1 掃描頭 31 3-6.2 步進器 32 3-6.3 避震裝置 33 3-6.4 電子控制系統 33 3-6.5 控溫裝置 33 3-7 殘氣分析儀 34 3-8低能量電子繞射儀 35 第四章 實驗步驟 38 4-1 實驗流程圖 38 4-2 前置作業 39 4-2.1 STM探針的製備 39 4-2.2 組裝樣品 41 4-3 超高真空環境的建立 44 4-4 基底選擇及處理 46 4-4.1 Si(111)-(7×7) DAS reconstruction 46 4-4.2 Ag/ Si(111)-(√3×√3) reconstruction 49 第五章 實驗結果與分析 51 5-1室溫下,不同鍍量的鎳在銀/矽(111)-(√3×√3)上的成長 51 5-2 固定Ni鍍量,觀察表面形貌與溫度的關係 56 5-2.1 鍍量(θ)=0.1 ML 56 5-2.2 鍍量(θ)=0.6 ML 60 5-2.3 鍍量(θ)=2.7 ML 74 5-3 固定鍍量,改變溫度的LEED圖 77 5-4 銀矽基底、S基底、T平臺和t薄膜的STS 80 第六章 實驗結論 83 第七章 參考資料 89

    [1] G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel, Appl. Phys. Lett. 40, 178 (1982)
    [2] G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel, Phys. Rev. Lett. 49, 57 (1982)
    [3] G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel, Phys. Rev. Lett. 50, 120 (1983)
    [4] R. S. Becker et al., Phys. Rev. Lett. 55, 987 (1985)
    [5] R. S. Becker et al., Phys. Rev. Lett. 55, 2032 (1985)
    [6] J. A. Stroscio and W. J. Kaiser, eds. Scanning Tunneling Microscopy (1993)
    [7] P. Joyez, V. Bouchiat, D. Esteve, C. Urbina, and M. H. Devoret, Phys. Rev. Lett. 79, 1349 (1997)
    [8] D. C. Ralph, C. T. Black, and M. Tinkham, Phys. Rev. Lett. 78, 4087 (1997)
    [9] D. V. Averin, A. N. Korotkov, A. J. Manninen, and J. P. Pekola, Phys. Rev. Lett. 78, 4821 (1997)
    [10] Scientific American, March (2003)
    [11] T. Nishimura, J. Takeda, Y. Asami, Y. Hoshino, Y. Kido, Sur. Sci. 588, 71 (2005)
    [12] Y. Hoshino, T. Nishimura, Y. Taki, Y. Asami, K. Sumitomo, Y. Kido, Sur. Sci. 511,
    112 (2002)
    [13]B.A. Julies, D. Knoesen, R. Pretorius, D. Adams, Thin Solid Films 347, 201 (1999)
    [14]H.M. Wang, C.M. Wang, L.X. Cai, Surface and Coatings Technology 168, 202
    (2003)
    [15]M. K. Datta, S. K. Pabi, B. S. Murty, Journal of Appl. Phys. 87, 8393 (2000)
    [16]C. Rado, S. Kalogeropoulou, N. Eustathopoulos, Acta mater. 47, 461 (1999)
    [17] P. A. Bennett, A. P. Johnson, and B. N. Halawith, Phys. Rev. B 37, 4268 (1988)
    [18]R. J. Wilson, S. Chiang, Phys. Rev. Lett. 58, 2575 (1987)
    [19] S.A. Parkin, M.Y. Lee, P.A. Bennett, J. Vac. Sci. Technol. A 13, 1589 (1995)
    [20] J. Yuhara, R. Ishigami, D. Ishikawa, K. Morita, Sur. Sci. 328, 269 (1995)
    [21] R. Eisberg, and R. Resnik, Quantum Physics of Atoms, Molecules, Solids, Nuclei,
    and Particles(2nd Ed), Wiley, New York (1985)
    [22] 趙智豪, 國立台灣師範大學碩士論文 (2010)
    [23] R.M. Feenstra Surf. Sci. 603, 2841 (2009)
    [24] Charles Kittel, Introduction to Solid State Physics(7th Ed), Wiley, New York (1997)
    [25] J. Bardeen, Phys. Rev. Lett. 6, 57 (1961)
    [26] T. Klitsner, R. S. Becker and J. S. Vickers Phys. Rev. B 41, 3837 (1990)
    [27] 高執貴, 國立台灣師範大學碩士論文 (2004)
    [28] R. J. Hamers, R. M. Tromp and J. E. Demuth, Phys. Rev. Lett. 56, 1972 (1986)
    [29] Joseph A. Stroscio et al., Phys. Rev. Lett. 57, 2579 (1986)
    [30] T. Klitsner, R. S. Becker and J. S. Vickers Phys. Rev. B 41, 3837 (1990)
    [31] Markus Ternes et al., Phys. Rev. Lett. 93, 146805 (2004)
    [32] John C. Vickerman, Surface Analysis—The Principal Techniques, Wiley (1997)
    [33] Kurt W. Kolasinski, Surface Science—Foundation of Catalysis and Nanoscience, Wiley (2002){
    [34] Charles Kittel, Introduction to Solid State Physics 8th, Wiley (2005)
    [35] 真空技術與應用,國科會精儀中心 (2001)
    [36] 蘇青森,真空技術精華,五南 (2003)
    [37] User’s manual, High Vacuum Technology, Alcatel (1998)
    [38] Instruments for Surface Science, Omicron (2000)
    [39] 表面分析儀器,國科會精儀中心 (1998)
    [40] K. Takayanagi, Y. Tanishiro, S. Takahashi, J. Vac. Sci. Technol. A 3,1502 (1985)
    [41] K. Kakitani, A.Yoshimori, H. Aizawa, M. Tsukada, Sur. Sci. 493, 200 (2001)
    [42] K. J. Wan, X. F. Lin, J. Nogami, Phys. Rev. B 47, 13700 (1992)
    [43] S.G. Azatyan, M. Iwami, V.G. Lifshits, Sur. Sci. 589, 106 (2005)

    下載圖示
    QR CODE