簡易檢索 / 詳目顯示

研究生: 王志雄
Chih-Hsiung Wang
論文名稱: 鐵/面心正方錳/鈷在基板銅(100)上,結合磁交換偏耦合和遠程層間磁耦合的磁性與結構研究
Combination of Exchange-Bias and Long-Range Interlayer Coupling in Fe/Fct-Mn/Co Trilayers
指導教授: 林文欽
Lin, Wen-Chin
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 85
中文關鍵詞: 磁交換偏耦合遠程層間磁耦合非同調的旋轉磁異向能理論模型
英文關鍵詞: exchange bias coupling, long range interlayer coupling, LEED, MOKE, AES, coherent rotation, incoherent
論文種類: 學術論文
相關次數: 點閱:93下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗內容是將Fe/fct-Mn/Co 三層結構以熱蒸鍍的方法將其鍍在銅單Cu(100)上研究此系統的磁交換偏耦合(exchange bias coupling)和遠程層間磁耦合(long range interlayer coupling)現象。
    在結構方面,面心正方的鈷(fct-Co)與面心正方的錳(fct-Mn)是利用Low Energy Electron Diffraction (LEED)和I-V LEED 確定其晶格結構。在測量磁性方面,我們利用Magnetic Optical Kerr Effect (MOKE)測得一系列以不同的鐵與錳的厚度的磁滯曲線。
    當fct-Mn 厚度增加至24 個原子層,Fe 和Co 的磁矩會經歷過非同調的旋轉(incoherent rotation),造成two-step 的磁滯曲線產生。遠程層間磁耦合(long range interlayer coupling)的影響是傾向鐵和鈷的同調的旋轉(coherent rotation)。但是,Mn/Co 的磁交換偏耦合(exchange bias coupling)會增加鈷的矯頑磁力,同時也破壞到鈷跟鐵的磁矩的同調旋轉機制。結果我們發現當鐵的磁矩正在翻轉時,鈷一開始也跟隨著鐵翻轉,但是到了鐵完成180。翻轉後,鈷又會再次反轉回原始方向。
    最後,我們使用磁異向能理論模型(single domain model)以模擬當磁交換偏耦合(exchange bias coupling) 和遠程層間磁耦合(long range interlayer coupling)兩者互相競爭下,所產生的上述磁翻轉機制。

    In order to study the combination of exchange bias coupling and long range interlayer coupling, the Fe/fct-Mn/Co trilayers was grown on a single crystal of Cu(100). Low energy electron diffraction (LEED) and I-V LEED were
    used to check the crystalline structures of fct-Co and fct-Mn. We also used magnetic optical kerr effect (MOKE) to get a series of magnetic hysteresis loops with a function of Mn and Fe.
    When the thickness of Mn was increased to 24ML, the magnetic hysteresis loop became two-step loop with a special feature, because the Co and Fe moments underwent incoherent magnetization switching.
    Long range interlayer coupling preferred the coherent rotation of Fe and Co, but the exchange bias coupling of Mn/Co increased the coercivity field of Co layer, which prevented the coherent rotation.
    As the Fe layer flipped, the Co moment followed the Fe to rotate, and then turned back to the initial direction. Our simulation can demonstrate the phenomenon is similar to our experimental observation.

    中文摘要 Abstract Contents …………………………………………………………………………… 1 List of figures…………………………………………………………………...…… 3 List of tables……………………...…………………………………………………. 6 1. Introduction……………….…………………………………………………….. 7 2. Basic concepts 2.1 UHV (Ultra High Vacuum) in NTNU…………………………..…………..9 2.2 The basic concepts of growth film..……………………………………. 10 2.3 Hysteresis loop..…………………………………………………………. 13 2.4 Magnetic anisotropy…………………..…..…………………………….. 15 2.5 Curie, Neel and Blocking temperature…………..……………………...16 2.6 Exchange bias………………………………………………..………….. 18 2.7 Interlayer coupling…………………………...……………………………20 2.8 Stoner-Wohlfarth model…..………………….………………………..... 21 2.8.1 Domain and domain wall…………………………………………. 21 2.8.2 Stoner-Wohlfarth model(single domain model) …….………. 21 3. Experiment apparatus and theories 3.1 Muti-functional UHV (Ultra High Vacuum) system…...…..…23 3.2 MOKE (Magneto-Optical Kerr Effect)…………………..……………….25 3.3 LEED and I-V LEED ……………………………………………………..27 3.3.1 LEED (Low Energy Electron Diffraction)……………………….. 27 3.3.2 I-V LEED………….……………………………………………….. 30 3.4 AES (Auger Electron Spectroscopy).…….………………………….... 31 3.5 Homemade evaporation gun…..…………………………………..…… 32 3.6 Manganese crucible…………………..………………………………… 34 3.6.1 The preparation of manganese crucible…………………….….34 3.6.2 Blueprints of Crucibles…………………………………………… 41 4. Results 4.1 Experimental preparations……………………………………………... 43 4.2 Cu(100) single crystal……………….…………………………………...45 4.3 Crystalline structures in LEED and I-V LEED……………..… 46 4.4 Magnetic measurement……………………………………………….. 49 4.4.1 0-13ML Fe/10ML Co/Cu(100)……………….………………….. 53 4.4.2 0, 16, 24ML Mn/10ML Co/Cu(100)………….…………….……..54 4.4.3 0-13ML Fe/16ML Mn/10ML Co/Cu(100)………..…………….... 55 4.4.4 0-13ML Fe/24ML Mn/10ML Co/Cu(100)….…..…………..……. 55 5. Discussions 5.1 The rotation of easy axis………..……………..……...…………..……. 57 5.2 The transformation of crystalline structure…………….…………57 5.3 Single domain model simulation………..……………………………… 58 6. Conclusions……………………………………………………………………. 63 7. Summary………………………………………………………………………. 64 8. Bibliography…………………………………………………………………… 65 Appendix A1. Mechanical pump………………………………………………...………. 68 A2. Turbo pump………………………...…………………………...………… 69 A3. Ion pump…………….…………………………………………………..…71 A4. TSP (Ti-Sublimation Pump)…………..…………….…………………… 73 A5. Ion gauge……………….…………………………………………………. 75 A6. RGA (Residual Gas Analyzer)……...………………………..…………. 77 A7. STM (Scanning Tunnel Microscope)……………..…………...…………80 A8. Homemade STM chamber……………………………………………………………….82

    [1].薄膜工程學-白木靖寬、吉田貞史, 金華 2008
    [2].Editors-in-chief Helmut Kronmull Stuart Parkin, Handbook of Magnetism and Advanced Magnetic Materials.
    [3]. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).
    [4]. J. Nogues, I.K. Schuller/ Journal of Magnetism and Magnetic Materials 192(1999) 203-232
    [5]. J. Nohues et al. / Physics Reports 422 (2005) 65-117
    [6]. P. Bruno and C. Chappert, Phys. Rev. Lett. 67, 1602 (1991); Phys. Rev. B46, 261 (1992).
    [7]. 林彥穎,國立臺灣師範大學物理研究所碩士論文(2009).
    [8]. http://www.che.ccu.edu.tw/~surface/file/homework/LEED.pdf
    [9]. 固態物理概論閻守勝五南書局 2006
    [10]. Thompson, M. (Michael), Auger electron spectroscopy
    [11]. 陳佑駿,國立臺灣大學物理研究所碩士論文(2002).
    [12]. 真空技術精華蘇青森五南 2010
    [13]. 圖解真空技術入門小宮 宗治 世茂 2010
    [14]. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).
    [15]. J. Nogues and I. K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999).
    [16]. M. Kiwi, J. Magn. Magn. Mater. 234, 584 (2001).
    [17]. F. Offi, W. Kuch, and J. Kirschner, Phys. Rev. B 66, 064419 (2002).
    [18]. P. Grunberg, R. Schreiber, Y. Pang, M. B. Brodsky, and H. Sowers, Phys.Rev. Lett. 57, 2442 (1986).
    [19]. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P.Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61,2472 (1988).
    [20]. S. S. P. Parkin, N. More, and K. P. Roche, Phys. Rev. Lett. 64, 2304(1990).
    [21]. P. Bruno and C. Chappert, Phys. Rev. Lett. 67, 1602 (1991); Phys. Rev.B 46, 261 (1992).
    [22]. Y. Wang, P. M. Levy, and J. L. Fry, Phys. Rev. Lett. 65, 2732 (1990).
    [23]. P. Bruno, Europhys. Lett. 23, 615 (1993).
    [24]. Z. Q. Qiu, J. Pearson, and S. D. Bader, Phys. Rev. B 46, 8659 (1992).
    [25]. S. T. Purcell, W. Folkerts, M. T. Johnson, N. W. E. McGee, K. Jager, J.aan de Stegge, W. B. Zeper, W. Hoving, P. Grunberg, Phys. Rev. Lett.67, 903 (1991).
    [26]. S. T. Purcell, M. T. Johnson, N. W. E. McGee, R. Coehoorn, and W.Hoving, Phys. Rev. B 45, 13064 (1992).
    [27]. J. Camarero, Y. Pennec, J. Vogel, M. Bonfim, S. Pizzini, F. Ernult, F.Fettar, F. Garcia, F. Lancon, L. Billard, and B. Dieny, Phys. Rev. Lett. 91,27201 (2003).
    [28]. J. Wu, J. Choi, A. Scholl, A. Doran, E. Arenholz, Y. Z. Wu, C. Won,Chanyong Hwang, Z. Q. Qiu, Phys. Rev. B 80, 12409 (2009).
    [29]. P.A.A. van der Heijden, C.H.W. Swuste, W.J.M. de Jonge, J.M. Gaines,J.T.W.M. van Eemeren and K.M. Schep, Phys. Rev. Lett. 82, 1020(1999).
    [30]. A. Brambilla, P. Sessi, M. Cantoni, M. Finazzi, N. Rougemaille, R.Belkhou, P. Vavassori, L. Duo, and F. Ciccacci, Phys. Rev. B79, 172401(2009).
    [31]. Haiwen Xi and Robert M. White, Phys. Rev. B 62, 3933 (2000).
    [32]. M.E. Filipkowski, J.J. Krebs, G.A. Prinz, C.J. Gutierrez, Phys. Rev. Lett.75, 1847 (1995).
    [33]. X. H. Liu, W. Liu, F. Yang, X. K. Lv, W. B. Cui, S. Guo, W. J. Gong, and Z.D. Zhang, Appl. Phys. Lett. 95, 222505 (2009).
    [34]. Hyeok-Cheol Choi, Chun-Yeol You, Ki-Yeon Kim, Jeong-Soo Lee, Je-Ho Shim, Dong-Hyun Kim, Phys. Rev. B 81, 224410 (2010).
    [35]. E. C. Passamani, B. Croonenborghs, B. Degroote, and A. Vantomme,Phys. Rev. B 67, 174424 (2003).
    [36]. Y.H. Ren, C. Wu, Y. Gong, C. Pettiford, and N. X. Sun, J. Appl. Phys.105, 73910 (2009).
    [37]. Shi-shen Yan, R. Schreiber, F. Voges, C. Osthover, and P. Grunberg,Phys. Rev. B 59, R11641 (1999).
    [38]. R. Morales, Zhi-Pan Li, J. Olamit, Kai Liu, J.M. Alameda, and Ivan K.Schuller, Phys. Rev. Lett. 102, 97201 (2009).
    [39]. A. Brambilla, P. Biagioni, M. Portalupi, M. Zani, M. Finazzi, and L. Duo,Phys. Rev. B 72, 174402 (2005).
    [40]. R. K. Kawakami, Ernesto J. Escorcia-Aparicio, and Z. Q. Qiu, J. Appl.Phys. 79, 4532 (1996).
    [41]. Y. Z. Wu, G. S. Dong, and X. F. Jin, Phys. Rev. B 64, 214406 (2001).
    [42]. W. C. Lin, T. Y. Chen, L. C. Lin, B. Y. Wang, Y. W. Liao, K.-J. Song, and M.-T. Lin, Phys. Rev. B 75, 54419 (2007).
    [43]. J. T. Kohlhepp, H. Wieldraaijer, and W. J. M. de Jonge, Appl. Phys. Lett.89, 32507 (2006).
    [44]. J. T. Kohlhepp, and W. J. M. de Jonge, J. Appl. Phys. 95, 6840 (2004).
    [45]. J.T. Kohlhepp, and W. J. M. de Jonge, Phys. Rev. Lett. 96, 237201(2006).
    [46]. W. C. Lin, L. C. Lin, T. Y. Chen, B. Y. Wang, K.-J. Song, and M.-T. Lin, J. Appl. Phys. 97, 10K112 (2005).
    [47]. Dongqi Li, M. Freitag, J. Pearson, Z. Q. Qiu, and S. D. Bader, Phys. Rev.Lett. 72, 3112 (1994).
    [48]. R. Allenspach, and A. Bischof, Phys. Rev. Lett. 69, 3385 (1992).
    [49]. Ernesto J. Escorcia-Aparicio, R. K. Kawakami, and Z. Q. Qiu, J. Appl.Phys. 79, 4964 (1996).
    [50]. S. Muller, P. Bayer, C. Reischl, K. Heinz, B. Feldmann, H. Zillgen, and M.Wuttig, Phys. Rev. Lett. 74, 765 (1995).
    [51]. Sebastiaan van Dijken, Giovanni Di Santo, and Bene Poelsema, Phys.Rev. B 63, 104431 (2001).
    [52]. W. C. Lin, B.Y. Wang, Y.W. Liao, Ker-Jar Song, Minn-Tsong Lin, Phys.Rev. B 71, 184413 (2005).
    [53]. B. Heinrich, J.F. Cochran, M. Kowalewski, J. Kirschner. Z. Celinski, A.S.Arrott, and K. Myrtle, Phys. Rev. B 44, 9348 (1991).
    [54]. David L. Atherton, senior member, IEEE, and J. R. Beattie IEEE Transactions on magnetic. Vol. 26, No. 6, November 1990.
    [55].
    http://upload.wikimedia.org/wikipedia/commons/thumb/9/9e/SwHyst_vs_angle.svg/2000px-SwHyst_vs_angle.svg.png

    下載圖示
    QR CODE