簡易檢索 / 詳目顯示

研究生: 張嘉芸
Chia-Yun Chang
論文名稱: 阿達瑪轉換/毛細管電泳法適用之奈米流量進樣器的開發與研究
Development of a nano-controlled sample injection device for use in Hadamard transform/capillary electrophoresis (HT/CE)
指導教授: 林震煌
Lin, Cheng-Huang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 87
中文關鍵詞: 阿達瑪轉換-毛細管電泳法維他命B2
論文種類: 學術論文
相關次數: 點閱:63下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究設計一個新的奈米流量(nano-controlled)進樣器,並成功結合阿達瑪轉換法(Hadamard transform)與毛細管電泳法(capillary electrophoresis)。其中,首次利用壓克力Tee型連接頭將進樣器及毛細管電泳裝置連結。
      實驗過程為將10 μL的注射針置於注射式幫浦(syringe pump)上,再NI(National Instruments)PCI-6221程式控制注射式幫浦內部之步進馬達(stepping motor)轉動步數,進一步控制進樣體積。當設定步進馬達轉動步數為750~20000步(進樣體積為1.3 nL~49.4 nL)的範圍時,具有良好的線性關係(R2 =0.9927)。本研究以核黃素(又稱維他命B2)作為分析物,並以藍光雷射(波長473 nm, 100 mW)作為激發光源。當分析物推入壓克力Tee且經電泳分離後,通過偵測窗時,由雷射激發且放出螢光,最後以光電倍增管(PMT)作偵測。在相同的進樣條件下,以阿達瑪127、255次序列分別進行實驗,訊號雜訊比可得到5.3及7.9倍的改良效果,與理論值(5.6與8)相當符合。最後,本實驗嘗試以阿達瑪127次序列進樣與毛細管線上濃縮技術進行結合,結果顯示其S/N比增加5.2倍,與理論值相當接近。
    關鍵字:阿達瑪轉換/毛細管電泳法、維他命B2

    A novel nano-controlled sample injection device for use in Hadamard transform/capillary electrophoresis (HT/CE) was successfully developed. Instead of commercial Tee products, an acrylic-Tee connector was well designed and made in-house. Three pieces of capillaries (used for sample solution and buffer solutions, respectively) can be tightly connected together with very low dead-volume. The sample solution was placed in a syringe injector (size, 10 µL) and was pushed out by a stepping motor which was controlled by a personal computer through a NI (National Instruments) PCI-6221 device. The volume of sample injection can be well controlled and calculated based on the steps (750- ~ 20,000-steps) of the stepping motor, corresponding to the injected volume of 1.3 nL ~ 49.4 nL. A riboflavin solution and a blue diode laser (wavelength, 473 nm; 100 mW) were selected as a model compound and the light source, respectively. Compared with a conventional single injection method, the S/N ratios were substantially improved after inverse Hadamard transformation of the encoded chromatogram. Under optimized conditions, when Hadamard matrices of 127 and 255 were used, the S/N ratios of the signals for riboflavin (concentration level, 0.03 ppm) were substantially improved to 5.3- and 7.9-fold, respectively, and those improvements are in good agreement with those obtained by theory (5.6- and 8.0-fold).

    中文摘要 Ⅰ 英文摘要 Ⅱ 目錄 Ⅲ 圖目錄 Ⅴ 表目錄 Ⅵ 第一章、緒論 1 1-1 研究目的 1 1-2 分析物簡介 3 1-2-1 維他命B2 3 1-2-2 孔雀石綠染料 6 第二章、分析方法與原理 8 2-1 毛細管電泳層析法之分離模式 8 2-1-1 毛細管區帶電泳(CZE) 9 2-1-2 微胞電動層析法(MEKC) 12 2-2 毛細管線上濃縮技術 16 2-2-1 毛細管電泳線上堆積法(stacking) 18 2-3 阿達瑪矩陣原理 20 2-3-1 矩陣起源 21 2-3-2 阿達瑪轉換法 22 2-3-3 LabVIEW 操作程式 29 2-3-4 阿達瑪轉換提高S/N值的理論值 31 2-4 阿達瑪矩陣轉換在毛細管電泳上的應用 34 第三章、實驗 35 3-1 壓克力Tee型連接頭的製作 35 3-2 進樣裝置 37 3-2-1 機械式進樣 37 3-2-2 氣動式進樣 39 3-3 實驗儀器裝置 42 3-3-1 自組式毛細管電泳/雷射誘導螢光分析儀(CE- LIF) 42 3-3-2 自組式毛細管電泳/拉曼分析儀(CE- Raman) 44 3-4 儀器及週邊設備列表 46 3-5 使用藥品列表 50 3-6 氣動式進樣-毛細管電泳/拉曼分析儀之實驗條件 51 3-6-1 氣動式進樣之條件 51 3-6-2 毛細管區帶電泳(CZE)電泳條件的確立與配製 51 3-7 機械式進樣-毛細管電泳/雷射誘導螢光儀之實驗條件 52 3-7-1 毛細管區帶電泳(CZE)電泳條件的確立與配製 52 3-7-2 線上濃縮技術CZE-stacking條件的確立與配製 53 第四章、結果與討論 54 4-1 市售三向連接頭與壓克力Tee型連接頭之比較 54 4-2 氣動式進樣-毛細管電泳/拉曼分析儀 56 4-2-1 氣動式進樣-毛細管電泳/拉曼分析儀之電泳圖探討 56 4-2-2 壓力式進樣的穩定度 61 4-3 機械式進樣-毛細管電泳/雷射誘導螢光分析儀 64 4-3-1 緩衝溶液的選擇 64 4-3-2 步進馬達之穩定度 66 4-3-3 機械進樣之穩定度 68 4-3-4 以阿達瑪序列進樣及轉換結果與理論值比較 72 4-3-5 以阿達瑪序列進樣搭配CZE-stacking 76 第五章、結論 83 參考文獻 84

    [1] C. T. Culbertson, J. W. Jorgenson, Anal. Chem. 70 (1998) 2629.
    [2] J. A. McReynolds, S. A. Shippy, Anal. Chem. 76 (2004) 3214.
    [3] H. J. Crabtree, M. U. Kopp, A. Manz, Anal. Chem. 71 (1999) 2130.
    [4] Y. C. Kwok, A. Manz, Electrophoresis, 22 (2001) 222.
    [5] J. N.van der Moolen, D. J. Louwerse, H. Poppe, H. C. Smit, Chromatographia 40 (1995) 368.
    [6] J. C. Fister, S. C. Jacobson, J. M. Ramsey, Anal. Chem. 71 (1999) 4460.
    [7] T. Kaneta, Anal. Chem. 73 (2001) 540a.
    [8] T. Kaneta, K. Kosai, T. Imasaka, Anal. Chem. 74 (2002) 2257.
    [9] T. Kaneta, Y. Yamaguchi, T. Imasaka, Anal. Chem. 71 (1999) 5444.
    [10] P. Zeppenfeld, M. Krzyzowski, C. Romainczyk, R. David, Rev. Sci. Instrum. 64 (1993) 1520.
    [11] Hanley, Q. S. Appl. Spectrosc. 55 (2001) 318.
    [12] K. Hata, Y. Kichise, T. Kaneta, T. Imasaka, Anal. Chem. 75 (2003) 1765.
    [13] K. Hata, T. Kaneta, T. Imasaka, Anal. Chem. 76 (2004) 4421.
    [14] K. L. Braun, S. Hapuarachchi, F. M. Fernandez, and C. A. Aspinwall, Anal. Chem. 78 (2006) 1628.
    [15] D. Yamamoto, T. Kaneta, T. Imasaka, Electrophoresis, 28 (2007) 4143.
    [16] P. F. Heelis, in: F. Müller (Ed.), CRC Press, Boca Raton, FL, (1991) 171.
    [17] T. R. I. Cataldi, D. Nardiello, G. E. De Benedetto, S. A. Bufo, J. Chromatogr. A, 968 (2002) 229.
    [18] F. Valls, M. T. Sancho, M. A. fernández-Muiño, M. A. Checa, J. Agric. Food Chem. 47 (1999) 1067.
    [19] C. D. Capo-chichi, J.-L. Guéant, F. Feillet, F. Namour, M. Vidailhet, J. Chromatogr. B 739 (2000) 219.
    85
    [20] S. Hustad, P. M. Ueland, J. Schneede, Clin. Chem. 45:6 (1999) 862.
    [21] T. R. I. Cataldi, D. Nardiello, L. Scrano, A. Scopa, J. Agric. Food Chem. 50 (2002) 6643.
    [22] J. H. Wassink, S. G. Mayhew, Anal. Biochem. 68 (1975) 609.
    [23] J. A. Tillotson, M. M. Bashor, Anal. Biochem. 107 (1980) 214.
    [24] M. G. Duyvis, R. Hilhorst, C. Laane, D. J. Evans, D. J. M. J. Agric. Food Chem. 50 (2002) 1548.
    [25] M. M. Dittmann, G. P. Rozing. J. Chromatogr. A, 744 (1996) 63
    [26] A. Cohen, B. L. Karger. J. Chromatogr. A, 397 (1987) 409
    [27] P. Scherpenisse, A. A. Bergwerff, Anal. Chim. Acta, 529 (2005) 173
    [28] M. Mazereeuw, V. Spikmans, U. R. Tjaden, J. Chromatogr. A, 1067 (2005) 101
    [29] S. K. Otsuka, K. Ichikawa, A. Tsuchiya, T. Ando, Anal. Chem. 56 (1984) 111
    [30] L. G. Rushing, J. Thompson, J. Chromatogr. B, 688 (1997) 325
    [31] K. Mitrowska, A. Posyniak, J. Zmudzki, J. Chromatogr. A, 1089 (2005) 187
    [32] N. Haagsma, C. A. J. Hajee, J. Chromatogr. B, 669 (1995) 219
    [33] J. W. Joegenson, K. D. Lukacs, J. Chromatogr. 218 (1981) 209.
    [34] J. W. Joegenson, K. D. Lukacs, Anal. Chem. 53 (1981) 1298.
    [35] K. Otsuka, K. Ichikawa, A. Tsuchiya, T. Ando, Anal. Chem. 56 (1984) 111.
    [36] S. Terabe, K. Otsuka, T. Ando, Anal. Chem. 57 (1985) 834.
    [37] K. H. Row, W. H. Griest, M. P. Maskarienc, J. Chromatogr. 409 (1987) 193.
    [38] A. Cohen, B. L. Karger, J. Chromatogr. 397 (1987) 409.
    [39] S. Hjerten, M. D. Zhu, J. Chromatogr. 346 (1985) 265.
    [40] S. Hjerten, J. L. Liao, K. Yao, J. Chromatogr. 387 (1987) 127.
    [41] X. Huang, R. N. Zare, Anal. Chem. 63 (1991) 2193.
    [42] R. D. Holland, M. J. Sepaniak, Anal. Chem. 65 (1993) 1140.
    [43] X. Huang, M. J. Gordon, R. N. Zare, Anal. Chem. 60 (1993) 375.
    86
    [44] R. T. Kennedy, J. W. Gorgenson, Anal. Chem. 61 (1989) 1128.
    [45] D. N. Heiger, Hewlett-Packard Company Publication Number 12-5091-6199E.
    [46] H. Z. Helmholtz, Anal. Phys. Chem. 7 (1897) 337.
    [47] B. Krattiger, G. J. M. Bruin, A. E. Bruin, Anal. Chem. 66 (1994) 1.
    [48] M. Stefansson, M. Novotny, Anal. Chem. 66 (1994) 1134.
    [49] Y. Kim, M. D. Morris, Anal. Chem. 66 (1994) 1168.
    [50] Z. Zhzo, A. Malik, M. L. Lee, Anal. Chem. 65 (1994) 2747.
    [51] K. Otsuka, K. Ichikawa, A. Tsuchiya, T. Ando, Anal. Chem. 56 (1984) 111.
    [52] D. N. Heiger, Hewlett-Packard Company Publication Number 12-5091-6199E.
    [53] R.-L. Chien, in: M. G. Khaledi, (Ed.), High Performance Capillary Electrophoresis (Theory, Techniques and Applications), Chapter 13, CRC Press, (1998).
    [54] Z. Liu, P. Sam, S. R. Sirimanne, P. C. McClure, J. Grainger, D. G. Patterson, J. Chromatogr. A 673 (1994) 125.
    [55] K. R. Nielson, J. P. Foley, J. Chromatogr. A 686 (1994) 283.
    [56] J. P. Quirino, S. Terabe, J. Chromatogr. A 781 (1997) 119.
    [57] J. P. Quirino, S. Terabe, Science 282 (1998) 465.
    [58] C.-X. Zhang, W. Thormann, Anal. Chem. 70 (1998) 540.
    [59] Z. K. Shihabi, J. Chromatogr. A 817 (1998) 25.
    [60] J. Palmer, N. J. Munro, J. P. Landers, Anal. Chem. 71 (1999) 1679.
    [61] J. P. Quirino, S. Terabe, Anal. Chem. 72 (2000) 1023.
    [62] P. Britz-McKibbin , A. R. Kranack, A. Paprica, D. D. Y. Chen, Analyst 123 (1998) 1461.
    [63] D. S. Burgi, Anal. Chem. 65 (1993) 3726.
    [64] J. P. Quirino, S. Terabe, J. Chromatogr. A 850 (1999) 339.
    87
    [65] Z. K. Shihabi, J. Chromatogr. A 744 (1996) 231.
    [66] D. Martínez, F. Borrull, M. Calull, J. Chromatogr. A 788 (1997) 185.
    [67] R. Kuldvee, M. Kaljurand, Anal. Chem. 70 (1998) 3695.
    [68] Y. He, H.-K. Lee, Anal. Chem. 71 (1999) 995.
    [69] J. Palmer, J. P. Landers, Anal. Chem. 72 (2000) 1941.
    [70] S. Locke, D. Figeys, Anal. Chem. 72 (2000) 2684.
    [71] W.-H. Ding, C.-H. Liu, J. Chromatogr. A 929 (2001) 143.
    [72] C.-X. Cao, Y.-Z. He, M. Li, Y.-T. Qian, M.-F. Gao, L.-H. Ge, S.-L. Zhou, L. Yang, Q.-S. Qu, Anal. Chem. 74 (2002) 4167.
    [73] Sylvester, J. J. Philosophical Magazine. 34 (1867) 461.
    [74] Griffiths, P. R., ed. “Transform Techniques in Chemistry. Modern AnalyticalChemistry Series” Plenum Press: New York, 1978.
    [75] Literature Seminar, Pan, C. “Applications of The Hadamard Transform in Analytical Chemistry” 2007, 3rd, pp. 3.
    [76] Yates, F. J. Roy. Stat. Soc. Supp. 2 (1935) 181.
    [77] Fellgett, P. J. de Physique et le Radium. 19 (1958) 187.
    [78] Hotelling, H. Ann. Math. Stat. 15 (1944) 297.
    [79] Zupan, J.; Bohanec, S.; Razinger, M.; Novic, M. Analytical Chimica Acta. 210 (1988) 63.
    [80] Smit, H. C. Chromatographia 3 (1970) 515.
    [81] Kaljurand, M.; Kūllik, E. J. Chromatogr. 171 (1979) 243.
    [82] F. Lorraine, O. Darren A., S. W. Franklin, Anal. Chim. Acta. 349 (1997) 221.
    [83] S. C. Su, S. S. Chou, D. F. Hwang, P. C. Chang, C. H. Liu, J. Food. Science, 66 (2001) 10.
    [84] R. Huopalahti, J. Sunell, Journal of Chromatography, 636 (1993) 133.
    [85] L. F. Russell, L. Brooks, K. B. McRae, Food Chem. 63 (1997) 125.

    下載圖示
    QR CODE