簡易檢索 / 詳目顯示

研究生: 呂泰霖
Tai-lin Lu
論文名稱: 大腸桿菌之單株抗體的生產與分析研究
Production and characterization of monoclonal antibodies directed to Escherichia coli
指導教授: 王玉麒
Wang, Yu-Chie
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 110
中文關鍵詞: 大腸桿菌單株抗體抗體
英文關鍵詞: Escherichia coli, monoclonal antibodies, antibodies
論文種類: 學術論文
相關次數: 點閱:530下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大腸桿菌是造成人類感染疾病的重要病原菌之一,每年都造成全球許多生命及經濟的損失,故開發快速且準確的大腸桿菌檢測方法有其必要性。現今我國使用傳統的細菌培養法作為大腸桿菌檢測的標準檢驗方法,其缺點是過程需時冗長,且需使用較多空間與耗費較多人力。故本研究擬生產可專一辨識大腸桿菌的單株抗體,期能用以開發大腸桿菌的免疫檢測方法,或是作為大腸桿菌的基礎研究工具。
    本研究以超音波破菌處理過的大腸桿菌(ATCC 11775,血清型O1:K1:H7)為抗原,對小鼠進行免疫注射,經細胞融合及選殖過程後,共獲得9株單株抗體。依照其對不同菌種的作用特性,這9株抗體可被分類為兩群:第一群共有6株 (I-1 ~ I-6),僅會與大腸桿菌反應;第二群則有3株 (II-1 ~ II-3),除了對大腸桿菌之外,亦會與本研究所測試的其他10種革蘭氏陰、陽性菌作用。
    進一步的抗原成分分析結果顯示,第一群抗體所辨識的抗原應為大腸桿菌表面的脂多醣O抗原;第二群抗體則可能辨識細菌的細胞內或分泌性的成分。在應用上,第一群單株抗體具有開發大腸桿菌免疫檢測方法的潛力,亦可透過遺傳工程技術產生重組抗體後,用作為抑菌用途的功能性食品添加成分,此外,本群抗體還可被用作為分析細菌表面O抗原種類之工具;第二群單株抗體則可應用於生菌數的檢測或被用來分離細菌的保守成分,以供親緣關係探討之用。
    本研究也利用自行生產的單株抗體(I-5),進行大腸桿菌免疫偵測方法的先驅研究。藉著簡易的步驟,我們開發的微量離心管免疫偵測方法可將大腸桿菌的偵測極限下降至104 CFU/mL,並且整個過程僅需2.5小時即可完成,未來若能進一步確定抗體的專一性及提升檢測方法的敏感度,則將有取代現行標準檢測方法的潛力。

    Escherichia coli is one of the main pathogens causing human disease. It annually not only made people’s deadth, but also result in large economic loss in the world.Therefore it is important to develop a rapid and accurate detection method for E. coli. Currently, the national standard detection method of E. coli is bacterial culture method, which is time-consuming, labor extensive, and space required. Thus, the aim of the present study is to produce E. coli-specific monoclonal antibodies, which may be used to improve the detection method for E. coli and as tools for basic researches.
    To fulfille our aim, we used sonicated E. coli(ATCC 11775, O1:K1:H7) cells as antigens to immuniz mice and manufactured monoclonal antibodies (MAbs) against E. coli. After cell fusion and cloning processes, we have successfully obtained nine E. coli-detecting MAbs. We can cluster these MAbs into two groups by bacterial specificity. The group I MAbs (I-1 ~ I-6) recognize just E. coli, and the group II MAbs (II-1 ~ II-3) recognize not only E. coli, but also all the other tested Gram-positive and Gram-negative bacteria.
    The group I MAbs recognize the O-antigen of LPS on the surface of E. coli. The result of immunoprecipitation proved the group II MAbs recognize antigens are cytosolic or or secreted out by bacteria. The group I MAbs might be used to develop E. coli immunodetection methods or as funtional antibiotic supplyment of food produced by genetic engineering. Besides, they can be used as a tool for bacterial O-antigen analysis.
    Then, the group II MAbs might be applicable for detection of total bacterial count or basic researches, e.g. bacterial phylogenetic studies.
    In this study, we presently used our I-5 MAb to develop a pilot study of immunodetection method. In this microfuge tube-based immunoassay, we used simple processes to increase the sensitivity at 104 CFU/mL within 2.5 h. After characterizing the specificity of MAbs and increasing the sensitivity of this assay in the future, this method might have the potential to replace the national detection method for E.coli.

    摘要 1 Abstract 3 壹、緒論 5 一、食源性疾病及發展大腸桿菌偵測法的必要性 5 二、大腸桿菌的介紹 7 三、大腸桿菌表面結構及抗原簡述 9 四、大腸桿菌感染途徑與症狀 12 五、現行國家標準檢驗方法 15 六、其他大腸桿菌偵測方法 17 七、研究目的 22 貳、材料與方法 24 一、抗原的製備 24 1. 大腸桿菌菌數定量方法測試 24 2. 大腸桿菌超音波破菌條件測試 24 3. 蛋白質定量 24 二、單株抗體製備 25 1. 小鼠免疫注射 25 2. 小鼠脾臟細胞與骨隨瘤細胞融合 25 3. 融合瘤細胞株篩選與單株化 26 (1) 酵素免疫分析法 26 (2) 細胞單株化 27 三、單株抗體的純化與分析 27 1. 大腸桿菌單株抗體Isotyping 27 2. 大腸桿菌單株抗體的濃縮及Protein A/G親和性管柱純化 28 3. 大腸桿菌單株抗體對不同菌株專一性分析 29 4. 大腸桿菌單株抗體結合大腸桿菌細菌顆粒能力分析 30 (1) 福馬林固定方法測試 30 (2) 大腸桿菌活菌免疫沉澱試驗 31 5. 大腸桿菌O-antigen(LPSs)萃取及單株抗體所辨識抗原是否為LPS分析 32 6. 大腸桿菌單株抗體的效價分析 34 7. 不同抗體株間競爭性測試(Competitive ELISA) 34 四、免疫分析方法的開發 35 (1) Direct ELISA的分析 35 (2) Microfuge tube immunoassay的分析 36 參、結果 37 一、抗原的製備 38 超音波破菌條件測試 38 二、單株抗體的製備 40 三、單株抗體的純化與分析 41 (1) 抗體分型試驗(Isotyping) 41 (2) 大腸桿菌單株抗體純化結果 42 各大腸桿菌單株抗體進行免疫染色分析 43 (3) 大腸桿菌單株抗體對不同菌種的專一性分析 44 改變二抗後再次進行菌種專一度測試 51 (4) 大腸桿菌單株抗體結合大腸桿菌細菌顆粒能力分析 57 (一) 福馬林固定處理 57 (二) 免疫沉澱方法證明單株抗體對菌體吸附能力 59 (5) 大腸桿菌單株抗體是否辨識LPSs (O-antigen) 61 (6) 大腸桿菌單株抗體的效價分析 62 (7) 大腸桿菌單株抗體間競爭性測試分析(Competitive ELISA) 65 四、大腸桿菌免疫偵測方法的探討 69 (1) Direct ELISA的分析結果 69 (2) 使用至三級抗體對ELISA檢測是否可提升靈敏度 71 (3) Microfuge tube immunoassay的分析結果 72 肆、討論 74 一、單株抗體生產製備的策略 74 (1) 萃取表面抗原及可能面臨的問題 74 (2) 使用超音波破菌處理抗原以增加篩選出大腸桿菌專一性 抗體的可能性 75 (3) 抗原注射的探討 75 (4) 抗體單株化的探討 77 二、抗體的分析與應用潛力 78 三、免疫偵測方法的開發探討 82 (1) 偵測的前處理──煮沸的必要性 82 (2) 使用到第三層抗體對檢測的優缺點 82 (3) LPSs抗體檢測極限推論 83 四、抗體應用發展 84 伍、總結 92 參考文獻 94 網站參考資料 104 附錄 105 附錄一、縮寫對照表 105 附錄二、細菌培養液配方 107 附錄三、常用溶液配方 108

    Abe CM, Salvador FA, Falsetti IN, Vieira MA, Blanco J, et al. 2008. Uropathogenic Escherichia coli (UPEC) strains may carry virulence properties of diarrhoeagenic E. coli. FEMS immunology and medical microbiology 52: 397-406

    Alteri CJ, Smith SN, Mobley HL. 2009. Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS pathogens 5: e1000448

    Amin OM. 2011. The Contribution of Pathogenic Bacteria to GI Symptoms in Parasite-Free Patients. J Bacteriol Parasitol

    Amor K, Heinrichs DE, Frirdich E, Ziebell K, Johnson RP, Whitfield C. 2000. Distribution of core oligosaccharide types in lipopolysaccharides from Escherichia coli. Infection and immunity 68: 1116-24

    Arya SK, Singh A, Naidoo R, Wu P, McDermott MT, Evoy S. 2011. Chemically immobilized T4-bacteriophage for specific Escherichia coli detection using surface plasmon resonance. The Analyst 136: 486-92

    Auer S, Wojna A, Hell M. 2010. Oral treatment options for ambulatory patients with urinary tract infections caused by extended-spectrum-beta-lactamase-producing Escherichia coli. Antimicrobial agents and chemotherapy 54: 4006-8

    Blanco M, Blanco J, Blanco JE, Ramos J. 1993. Enterotoxigenic, verotoxigenic, and necrotoxigenic Escherichia coli isolated from cattle in Spain. American journal of veterinary research 54: 1446-51

    Blanco M, Blanco JE, Alonso MP, Blanco J. 1994. Virulence factors and O groups of Escherichia coli strains isolated from cultures of blood specimens from urosepsis and non-urosepsis patients. Microbiologia 10: 249-56

    Blattner FR, Plunkett G, 3rd, Bloch CA, Perna NT, Burland V, et al. 1997. The complete genome sequence of Escherichia coli K-12. Science 277: 1453-62

    Carrillo M, Estrada E, Hazen TC. 1985. Survival and enumeration of the fecal indicators Bifidobacterium adolescentis and Escherichia coli in a tropical rain forest watershed. Applied and environmental microbiology 50: 468-76

    Charles A Janeway J, Paul Travers, Mark Walport, and Mark J Shlomchik. 2001. The distribution and functions of immunoglobulin isotypes. Immunobiology: The Immune System in Health and Disease. 5th edition. 9-16

    Cheasty T. 2008. Non-Vero cytotoxin-producing Enterovirulent Escherichia coli. oxoid 29

    Chen CS, Durst RA. 2006. Simultaneous detection of Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes with an array-based immunosorbent assay using universal protein G-liposomal nanovesicles. Talanta 69: 232-8

    Chen WJ, Tsai PJ, Chen YC. 2008. Functional nanoparticle-based proteomic strategies for characterization of pathogenic bacteria. Analytical chemistry 80: 9612-21

    Cheng Y, Liu Y, Huang J, Xian Y, Zhang W, et al. 2008. Rapid amperometric detection of coliforms based on MWNTs/Nafion composite film modified glass carbon electrode. Talanta 75: 167-71

    Choi JW, Kim YK, Oh BK. 2008. The development of protein chip using protein G for the simultaneous detection of various pathogens. Ultramicroscopy 108: 1396-400

    Clark CG, Johnson S, Johnson RP. 1995. Further characterisation of a monoclonal antibody reactive with Escherichia coli O157:H7. Journal of medical microbiology 43: 262-9

    Connell I, Agace W, Klemm P, Schembri M, Marild S, Svanborg C. 1996. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proceedings of the National Academy of Sciences of the United States of America 93: 9827-32

    Curd H, Liu D, Reeves PR. 1998. Relationships among the O-antigen gene clusters of Salmonella enterica groups B, D1, D2, and D3. Journal of bacteriology 180: 1002-7

    Daly P, Collier T, Doyle S. 2002. PCR-ELISA detection of Escherichia coli in milk. Letters in applied microbiology 34: 222-6

    de Graaf M, Boven E, Scheeren HW, Haisma HJ, Pinedo HM. 2002. Beta-glucuronidase-mediated drug release. Current pharmaceutical design 8: 1391-403
    Ewing WH. 1956. Enteropathogenic Escherichia coli serotypes. Annals of the New York Academy of Sciences 66: 61-70

    Fagan RP, Lambert MA, Smith SG. 2008. The hek outer membrane protein of Escherichia coli strain RS218 binds to proteoglycan and utilizes a single extracellular loop for adherence, invasion, and autoaggregation. Infection and immunity 76: 1135-42

    Fehr T, Bachmann MF, Bucher E, Kalinke U, Di Padova FE, et al. 1997. Role of repetitive antigen patterns for induction of antibodies against antibodies. The Journal of experimental medicine 185: 1785-92

    Fode-Vaughan KA, Maki JS, Benson JA, Collins ML. 2003. Direct PCR detection of Escherichia coli O157:H7. Letters in applied microbiology 37: 239-43

    Frank L, Markova S, Remmel N, Vysotski E, Gitelson I. 2007. Bioluminescent signal system: bioluminescence immunoassay of pathogenic organisms. Luminescence : the journal of biological and chemical luminescence 22: 215-20

    Fraser ME, Fujinaga M, Cherney MM, Melton-Celsa AR, Twiddy EM, et al. 2004. Structure of shiga toxin type 2 (Stx2) from Escherichia coli O157:H7. The Journal of biological chemistry 279: 27511-7

    Frenzen PD, Drake A, Angulo FJ. 2005. Economic cost of illness due to Escherichia coli O157 infections in the United States. Journal of food protection 68: 2623-30

    Fu J, Park B, Siragusa G, Jones L, Tripp R, et al. 2008. An Au/Si hetero-nanorod-based biosensor for Salmonella detection. Nanotechnology 19: 155502

    Galikowska E, Kunikowska D, Tokarska-Pietrzak E, Dziadziuszko H, Los JM, et al. 2011. Specific detection of Salmonella enterica and Escherichia coli strains by using ELISA with bacteriophages as recognition agents. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology 30: 1067-73

    Garabal JI, Gonzalez EA, Vazquez F, Blanco J, Blanco M, Blanco JE. 1996. Serogroups of Escherichia coli isolated from piglets in Spain. Veterinary microbiology 48: 113-23

    Ghosh AS, Melquist AL, Young KD. 2006. Loss of O-antigen increases cell shape abnormalities in penicillin-binding protein mutants of Escherichia coli. FEMS microbiology letters 263: 252-7

    Gould LH, Bopp C, Strockbine N, Atkinson R, Baselski V, et al. 2009. Recommendations for diagnosis of shiga toxin--producing Escherichia coli infections by clinical laboratories. MMWR. Recommendations and reports : Morbidity and mortality weekly report. Recommendations and reports / Centers for Disease Control 58: 1-14

    Gupta K, Stamm WE. 1999. Pathogenesis and management of recurrent urinary tract infections in women. World journal of urology 17: 415-20

    Guven B, Basaran-Akgul N, Temur E, Tamer U, Boyaci IH. 2011. SERS-based sandwich immunoassay using antibody coated magnetic nanoparticles for Escherichia coli enumeration. The Analyst 136: 740-8

    He X, Qi W, Quinones B, McMahon S, Cooley M, Mandrell RE. 2011. Sensitive detection of Shiga Toxin 2 and some of its variants in environmental samples by a novel immuno-PCR assay. Applied and environmental microbiology 77: 3558-64

    He Y, Keen JE, Westerman RB, Littledike ET, Kwang J. 1996. Monoclonal antibodies for detection of the H7 antigen of Escherichia coli. Applied and environmental microbiology 62: 3325-32

    Heinrichs DE, Monteiro MA, Perry MB, Whitfield C. 1998. The assembly system for the lipopolysaccharide R2 core-type of Escherichia coli is a hybrid of those found in Escherichia coli K-12 and Salmonella enterica. Structure and function of the R2 WaaK and WaaL homologs. The Journal of biological chemistry 273: 8849-59

    Jaypee. 2006. The Short Textbook of Medical Microbiology. 509

    Jin M, Lang J, Shen ZQ, Chen ZL, Qiu ZG, et al. 2012. A rapid subtractive immunization method to prepare discriminatory monoclonal antibodies for food E. coli O157:H7 contamination. PloS one 7: e31352

    Johnson DE, Lockatell CV, Russell RG, Hebel JR, Island MD, et al. 1998. Comparison of Escherichia coli strains recovered from human cystitis and pyelonephritis infections in transurethrally challenged mice. Infection and immunity 66: 3059-65

    Johnson TJ, Kariyawasam S, Wannemuehler Y, Mangiamele P, Johnson SJ, et al. 2007. The genome sequence of avian pathogenic Escherichia coli strain O1:K1:H7 shares strong similarities with human extraintestinal pathogenic E. coli genomes. Journal of bacteriology 189: 3228-36

    Kaijser B, Ahlstedt S. 1977. Protective capacity of antibodies against Escherichia coli and K antigens. Infection and immunity 17: 286-9

    Kim HS, Kim JY, Park MS, Zheng H, Ji GE. 2009. Cloning and expression of beta-glucuronidase from Lactobacillus brevis in E. coli and application in the bioconversion of baicalin and wogonoside. Journal of microbiology and biotechnology 19: 1650-5

    Kim KS, Itabashi H, Gemski P, Sadoff J, Warren RL, Cross AS. 1992. The K1 capsule is the critical determinant in the development of Escherichia coli meningitis in the rat. The Journal of clinical investigation 90: 897-905

    Koga T, Nishihara T, Fujiwara T, Nisizawa T, Okahashi N, et al. 1985. Biochemical and immunobiological properties of lipopolysaccharide (LPS) from Bacteroides gingivalis and comparison with LPS from Escherichia coli. Infection and immunity 47: 638-47

    Kohler G, Milstein C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256: 495-7

    Lazcka O, Del Campo FJ, Munoz FX. 2007. Pathogen detection: a perspective of traditional methods and biosensors. Biosensors & bioelectronics 22: 1205-17

    Lentz EM, Garaicoechea L, Alfano EF, Parreno V, Wigdorovitz A, Bravo-Almonacid FF. 2012. Translational fusion and redirection to thylakoid lumen as strategies to improve the accumulation of a camelid antibody fragment in transplastomic tobacco. Planta

    Lin YH, Chen SH, Chuang YC, Lu YC, Shen TY, et al. 2008. Disposable amperometric immunosensing strips fabricated by Au nanoparticles-modified screen-printed carbon electrodes for the detection of foodborne pathogen Escherichia coli O157:H7. Biosensors & bioelectronics 23: 1832-7

    Liu Y, Brandon R, Cate M, Peng X, Stony R, Johnson M. 2007. Detection of pathogens using luminescent CdSe/ZnS dendron nanocrystals and a porous membrane immunofilter. Analytical chemistry 79: 8796-802

    Liu Y, Gilchrist A, Zhang J, Li XF. 2008. Detection of viable but nonculturable Escherichia coli O157:H7 bacteria in drinking water and river water. Applied and environmental microbiology 74: 1502-7

    Liu Y, Ye J, Li Y. 2003. Rapid detection of Escherichia coli O157:H7 inoculated in ground beef, chicken carcass, and lettuce samples with an immunomagnetic chemiluminescence fiber-optic biosensor. Journal of food protection 66: 512-7

    Lugo JZ, Price S, Miller JE, Ben-David I, Merrill VA, et al. 2007. Lipopolysaccharide O-antigen promotes persistent murine bacteremia. Shock 27: 186-91

    Magalhaes PO, Lopes AM, Mazzola PG, Rangel-Yagui C, Penna TC, Pessoa A, Jr. 2007. Methods of endotoxin removal from biological preparations: a review. Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques 10: 388-404

    Magliulo M, Simoni P, Guardigli M, Michelini E, Luciani M, et al. 2007. A rapid multiplexed chemiluminescent immunoassay for the detection of Escherichia coli O157:H7, Yersinia enterocolitica, Salmonella typhimurium, and Listeria monocytogenes pathogen bacteria. Journal of agricultural and food chemistry 55: 4933-9

    Maheux AF, Picard FJ, Boissinot M, Bissonnette L, Paradis S, Bergeron MG. 2009. Analytical comparison of nine PCR primer sets designed to detect the presence of Escherichia coli/Shigella in water samples. Water research 43: 3019-28

    March SB, Ratnam S. 1986. Sorbitol-MacConkey medium for detection of Escherichia coli O157:H7 associated with hemorrhagic colitis. Journal of clinical microbiology 23: 869-72

    Marolda CL, Vicarioli J, Valvano MA. 2004. Wzx proteins involved in biosynthesis of O antigen function in association with the first sugar of the O-specific lipopolysaccharide subunit. Microbiology 150: 4095-105

    Mathew FP, Alagesan D, Alocilja EC. 2004. Chemiluminescence detection of Escherichia coli in fresh produce obtained from different sources. Luminescence : the journal of biological and chemical luminescence 19: 193-8

    Mazumdar SD, Hartmann M, Kampfer P, Keusgen M. 2007. Rapid method for detection of Salmonella in milk by surface plasmon resonance (SPR). Biosensors & bioelectronics 22: 2040-6

    Mietens C, Keinhorst H, Hilpert H, Gerber H, Amster H, Pahud JJ. 1979. Treatment of infantile E. coli gastroenteritis with specific bovine anti-E. coli milk immunoglobulins. European journal of pediatrics 132: 239-52

    Moll A, Kusecek B, Pluschke G, Morelli G, Kamke M, et al. 1986. A reexamination of the O1 lipopolysaccharide antigen group of Escherichia coli. Infection and immunity 53: 257-63

    Mora A, Lopez C, Dabhi G, Blanco M, Blanco JE, et al. 2009. Extraintestinal pathogenic Escherichia coli O1:K1:H7/NM from human and avian origin: detection of clonal groups B2 ST95 and D ST59 with different host distribution. BMC microbiology 9: 132

    Moulin-Schouleur M, Reperant M, Laurent S, Bree A, Mignon-Grasteau S, et al. 2007. Extraintestinal pathogenic Escherichia coli strains of avian and human origin: link between phylogenetic relationships and common virulence patterns. Journal of clinical microbiology 45: 3366-76

    Naja G, Bouvrette P, Hrapovic S, Luong JH. 2007. Raman-based detection of bacteria using silver nanoparticles conjugated with antibodies. The Analyst 132: 679-86

    Nataro JP, Kaper JB. 1998. Diarrheagenic Escherichia coli. Clinical microbiology reviews 11: 142-201

    Nowrouzian F, Wold AE, Adlerberth I. 2001. P fimbriae and aerobactin as intestinal colonization factors for Escherichia coli in Pakistani infants. Epidemiology and infection 126: 19-23

    Nucera DM, Maddox CW, Hoien-Dalen P, Weigel RM. 2006. Comparison of API 20E and invA PCR for identification of Salmonella enterica isolates from swine production units. Journal of clinical microbiology 44: 3388-90

    Nyquist-Battie C, Mathias L, Freeman LE, Lund D, Lim DV. 2005. Antibody-based detection of acid-shocked, acid-adapted, and apple juice-incubated Escherichia coli O157:H7. Journal of immunoassay & immunochemistry 26: 259-71

    Orskov I, Orskov F. 1985. Escherichia coli in extra-intestinal infections. The Journal of hygiene 95: 551-75
    Orskov I, Orskov F, Jann B, Jann K. 1977. Serology, chemistry, and genetics of O and K antigens of Escherichia coli. Bacteriological reviews 41: 667-710

    Panja S, Aich P, Jana B, Basu T. 2008. Plasmid DNA binds to the core oligosaccharide domain of LPS molecules of E. coli cell surface in the CaCl2-mediated transformation process. Biomacromolecules 9: 2501-9

    Park S, Kim H, Paek SH, Hong JW, Kim YK. 2008. Enzyme-linked immuno-strip biosensor to detect Escherichia coli O157:H7. Ultramicroscopy 108: 1348-51

    Paton AW, Paton JC. 1998. Detection and characterization of Shiga toxigenic Escherichia coli by using multiplex PCR assays for stx1, stx2, eaeA, enterohemorrhagic E. coli hlyA, rfbO111, and rfbO157. Journal of clinical microbiology 36: 598-602

    Pengsuk C, Longyant S, Rukpratanporn S, Chaivisuthangkura P, Sridulyakul P, Sithigorngul P. 2011. Differentiation among the Vibrio cholerae serotypes O1, O139, O141 and non-O1, non-O139, non-O141 using specific monoclonal antibodies with dot blotting. Journal of microbiological methods 87: 224-33

    Peterson AA, McGroarty EJ. 1985. High-molecular-weight components in lipopolysaccharides of Salmonella typhimurium, Salmonella minnesota, and Escherichia coli. Journal of bacteriology 162: 738-45

    Raetz CR, Whitfield C. 2002. Lipopolysaccharide endotoxins. Annual review of biochemistry 71: 635-700

    Raevskaia MV, Koval'chuk NV, Belaia Iu A. 1994. [Preparation of monoclonal antibodies to the O-antigen of Salmonella typhimurium serogroup B (O-4.5)]. Biulleten' eksperimental'noi biologii i meditsiny 117: 630-2

    Rao Y, Zhong L, Zhang F, Zhang X, Dai H. 2011. [Strategy for soluble expression of phage-displayed scFv antibody specific for zebrafish vitellogenin]. Sheng wu gong cheng xue bao = Chinese journal of biotechnology 27: 1637-44

    Ravindranath SP, Mauer LJ, Deb-Roy C, Irudayaraj J. 2009. Biofunctionalized magnetic nanoparticle integrated mid-infrared pathogen sensor for food matrixes. Analytical chemistry 81: 2840-6

    Reeves P. 1995. Role of O-antigen variation in the immune response. Trends in microbiology 3: 381-6

    Rensen PC, de Vrueh RL, Kuiper J, Bijsterbosch MK, Biessen EA, van Berkel TJ. 2001. Recombinant lipoproteins: lipoprotein-like lipid particles for drug targeting. Advanced drug delivery reviews 47: 251-76

    Rivera-Betancourt M, Keen JE. 2001. Murine monoclonal antibodies against Escherichia coli O4 lipopolysaccharide and H5 flagellin. Journal of clinical microbiology 39: 3409-13

    Robins-Browne RM, Hartland EL. 2002. Escherichia coli as a cause of diarrhea. Journal of gastroenterology and hepatology 17: 467-75

    Ronholm J, Zhang Z, Cao X, Lin M. 2011. Monoclonal antibodies to lipopolysaccharide antigens of Salmonella enterica serotype Typhimurium DT104. Hybridoma (Larchmt) 30: 43-52

    Sabat G, Rose P, Hickey WJ, Harkin JM. 2000. Selective and sensitive method for PCR amplification of Escherichia coli 16S rRNA genes in soil. Applied and environmental microbiology 66: 844-9

    Sanvicens N, Pascual N, Fernandez-Arguelles MT, Adrian J, Costa-Fernandez JM, et al. 2011. Quantum dot-based array for sensitive detection of Escherichia coli. Analytical and bioanalytical chemistry 399: 2755-62

    Schwan WR. 2008. Flagella allow uropathogenic Escherichia coli ascension into murine kidneys. International journal of medical microbiology : IJMM 298: 441-7

    Serra B, Gamella M, Reviejo AJ, Pingarron JM. 2008. Lectin-modified piezoelectric biosensors for bacteria recognition and quantification. Analytical and bioanalytical chemistry 391: 1853-60

    Sheikholvaezin A, Sandstrom P, Eriksson D, Norgren N, Riklund K, Stigbrand T. 2006. Optimizing the generation of recombinant single-chain antibodies against placental alkaline phosphatase. Hybridoma (Larchmt) 25: 181-92

    Shulman ST, Friedmann HC, Sims RH. 2007. Theodor Escherich: the first pediatric infectious diseases physician? Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 45: 1025-9

    Singh AK, Senapati D, Wang S, Griffin J, Neely A, et al. 2009. Gold Nanorod Based Selective Identification of Escherichia coli Bacteria Using Two-Photon Rayleigh Scattering Spectroscopy. ACS nano 3: 1906-12

    Stenutz R, Weintraub A, Widmalm G. 2006. The structures of Escherichia coli O-polysaccharide antigens. FEMS microbiology reviews 30: 382-403

    Su XL, Li Y. 2004. Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli O157:H7. Analytical chemistry 76: 4806-10

    Taniguchi Y, Nishizawa T, Honda T, Yoshioka N, Inagawa H, et al. 2007. Development and potential use of a monoclonal antibody to the lipopolysaccharide of Pantoea agglomerans (IP-PA1). Anticancer research 27: 3701-6

    Tawil N, Sacher E, Mandeville R, Meunier M. 2012. Surface plasmon resonance detection of E. coli and methicillin-resistant S. aureus using bacteriophages. Biosensors & bioelectronics

    Tivendale KA, Logue CM, Kariyawasam S, Jordan D, Hussein A, et al. 2010. Avian-pathogenic Escherichia coli strains are similar to neonatal meningitis E. coli strains and are able to cause meningitis in the rat model of human disease. Infection and immunity 78: 3412-9

    Torun O, Hakki Boyaci I, Temur E, Tamer U. 2012. Comparison of sensing strategies in SPR biosensor for rapid and sensitive enumeration of bacteria. Biosensors & bioelectronics

    Trautmann M, Held TK, Susa M, Karajan MA, Wulf A, et al. 1998. Bacterial lipopolysaccharide (LPS)-specific antibodies in commercial human immunoglobulin preparations: superior antibody content of an IgM-enriched product. Clinical and experimental immunology 111: 81-90

    Triantafilou M, Triantafilou K, Fernandez N. 2000. Rough and smooth forms of fluorescein-labelled bacterial endotoxin exhibit CD14/LBP dependent and independent binding that is influencedby endotoxin concentration. European journal of biochemistry / FEBS 267: 2218-26

    Vincent C, Boerlin P, Daignault D, Dozois CM, Dutil L, et al. 2010. Food reservoir for Escherichia coli causing urinary tract infections. Emerging infectious diseases 16: 88-95

    Voss S, Fischer R, Jung G, Wiesmuller KH, Brock R. 2007. A fluorescence-based synthetic LPS sensor. Journal of the American Chemical Society 129: 554-61

    Zhao X, Hilliard LR, Mechery SJ, Wang Y, Bagwe RP, et al. 2004. A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proceedings of the National Academy of Sciences of the United States of America 101: 15027-32

    Zhao ZJ, Liu XM. 2005. Preparation of monoclonal antibody and development of enzyme-linked immunosorbent assay specific for Escherichia coli O157 in foods. Biomedical and environmental sciences : BES 18: 254-9

    下載圖示
    QR CODE