簡易檢索 / 詳目顯示

研究生: 郭欣嵐
Hsin-Lan Kuo
論文名稱: 脊髓小腦運動失調症第十七型之微生物藥物篩檢模式:以 β-半乳糖苷酶結構互補特性偵測蛋白溶解度
Screening of Novel Molecules for SCA 17 Treatment by Using a Microbial Model: Monitoring Protein Solubility by β-Galactosidase Structural Complementation
指導教授: 李冠群
Lee, Guan-Chiun
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 102
中文關鍵詞: 第十七型脊髓小腦萎縮症
英文關鍵詞: Spinocerebellar ataxia type 17
論文種類: 學術論文
相關次數: 點閱:96下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多種遺傳性神經退化疾病為多麩醯胺 (polyglutamine, polyQ) 相關疾病,其中第十七型脊髓小腦萎縮症 (spinocerebellar ataxias type 17, SCA17),於染色體 6q27 位置上的 TATA-box binding protein (TBP) 基因之轉譯區,發生 CAG 三核苷酸重複擴增導致,可能的分子致病機制為突變的 TBP 蛋白上具有擴增的多麩醯胺片段,造成蛋白結構錯誤摺疊,導致轉錄調控功能喪失。因此,建立一個可篩選出有助於抑制 TBP 蛋白聚集之藥物的篩檢模式,對於治療第十七型脊髓小腦萎縮症是極重要之事。根據 β-半乳糖苷酶 (β-galactosidase, β-gal) 蛋白結構中的 α 和 ω 二片段可互補形成具活性之酵素的特性。本研究建立表達 TBP/α 融合蛋白之大腸桿菌表達系統,此系統藉由含多麩醯胺擴增的 TBP 蛋白不正常聚集,連帶影響 α 片段構形,而無法形成有活性的 β-半乳糖苷酶,導致無法代謝 X-gal,菌落無法呈現藍色的表現型。經表現型分析、基因型分析、西方轉漬分析及 β-半乳糖苷酶比活性分析,發現以 JM109(DE3) 大腸桿菌作為pGEX-5x-3-fTBP(Q40)-lacZα 質體之表達宿主,表達出不溶性 fTBP(Q40)/α 融合蛋白,菌體不具有 β-半乳糖苷酶活性,呈現出符合微生物藥物篩檢系統所必須具備的非藍色表現型。故選定 JM109(DE3)/pGEX-5x-3-fTBP(Q40)-lacZα 作為微生物藥物篩檢的模式菌株。並以海藻糖處理模式菌株,發現海藻糖可抑制 fTBP(Q40)/α 融合蛋白聚集,可作為此微生物藥物篩檢系統之正控制組。利用盤式培養方式培養此菌株,可以應用於高通量的藥物篩檢,預期藉此系統可以快速篩選出可抑制多麩醯胺擴增之蛋白聚集的藥物,加速第十七型脊髓小腦萎縮症的藥物開發。

    Many neurodegenerative diseases are linked to abnormally expanded CAG repeats in the coding regions of responsible genes. Spinocerebellar ataxia type 17 (SCA 17) was identified in CAG tri-nucleotide repeat expansion in the TATA-box binding protein (TBP) gene on chromosome 6q27. The possible molecular pathogenic mechanisms in SCA17 could be aggregation caused by mutant TBP with expanded polyglutamine (polyQ) strentches and dysfuction of transcriptional regulation by loss of function. An efficient cell-based screening for TBP aggregation inhibitors is important in drug discovery for SCA17 treatment. By structural complementation between the α- and ω-peptides of β-galactosidase (β-gal), the solubility of polyQ-expanded TBP can be monitored simply by the blue color of the culture and correlated with β-gal activity.In this study, we established an Escherichia coli. expression system to express the TBP/α fusion proteins. The results of phenotyping, genotyping, western blotting and β-gal activity assay showed that when α peptide was fused with insoluble polyQ-expanded TBP(Q40), it becomes misfolding and confer no β-gal activity. For this reason, the E. coli JM109(DE3) harboring pGEX-5x-3-fTBP(Q40)-lacZα can serve as a microbial model to screen for compounds that inhibit the polyQ-expanded TBP aggregation.
    Using this model, we found that trehalose showed potency to inhibit polyQ-expanded TBP aggregation and can be used as a positive control. Therefore, in a plate assay format, this microbial model is suitable for rapidly screening novel compounds that are capable of inhibiting the aggregation of polyQ proteins.

    目錄 I 表目錄 V 圖目錄 VI 附錄 IX 摘要 X Abstract XII 壹、緒論 1 一、神經退化性疾病 1 二、脊髓小腦運動失調症 2 三、多麩醯胺擴增疾病與第十七型脊髓小腦運動失調症 3 四、多麩醯胺擴增疾病之藥物開發 4 五、微生物之藥物篩檢模式 5 六、β-半乳糖苷酶之結構互補性原理與應用 5 貳、研究目的 7 参、研究材料與方法 8 一、人類 TBP 之全長 cDNA 8 二、重組菌株之建構 8 (一)、重組質體之建構 8 (二)、轉形作用及菌種保存 11 (三)、純化 DNA 片段及少量 DNA 製備 13 (四)、DNA 電泳分析及定序 13 三、藥物篩檢模式菌株之建立與評估 14 (一)、模式菌株之表現型分析 ─ 藍白篩選 15 (二)、模式菌株之基因型分析 ─ 重組質體於轉形菌株內之鑑定 16 (三)、模式菌株蛋白表達之定性分析 ─ 蛋白質電泳及西方轉漬分析 17 (四)、模式菌株蛋白表達之定量分析 ─ β-半乳糖苷酶比活性分析 22 四、建立藥物篩檢模式之正控制組 24 (一)、測試海藻糖或剛果紅對模式菌株的影響 24 五、利用模式菌株作藥物篩檢 29 肆、結果 31 一、重組菌株之建構 31 二、藥物篩檢模式菌株之建立與評估 32 (一)、模式菌株之表現型分析 ─ 藍白篩選 32 (二)、模式菌株之基因型分析 ─ 重組質體於轉形菌株內之鑑定 33 (三)、模式菌株蛋白表達之定性分析 ─ 蛋白質電泳及西方轉漬分析 34 (四)、模式菌株蛋白表達之定量分析 ─ β-半乳糖苷酶比活性分析 34 (五)、確立微生物之藥物篩檢模式 35 三、建立藥物篩檢模式之正控制組 35 (一)、測試海藻糖對模式菌株的影響 35 (二)、測試剛果紅對模式菌株的影響 42 四、利用模式菌株作藥物篩檢 43 (一)、測試海藻糖類似物對模式菌株的影響 43 (二)、測試由化學系提供的化合物對模式菌株的影響 44 伍、討論 45 一、藥物篩檢模式菌株之建立與評估 45 (一)、篩檢模式之質體比較 45 (二)、篩檢模式之評估 46 二、藥物篩檢模式之正控制組 48 (一)、測試海藻糖對模式菌株的影響 48 (二)、測試剛果紅對模式菌株的影響 54 陸、參考文獻 56

    Apostol BL, Kazantsev A, Raffioni S, Illes K, Pallos L, Bodai L, Slepko N, Bear JE, Gertler FB, Hersch S, Housman DE, Marsh JL and Thompson LM. A cell-based assay for aggregation inhibitors as therapeutics of polyglutamine-repeat disease and validation in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 2003; 100(10): 5950-5955.
    Barreca D, Laganà G, Ficarra S, Tellone E, Leuzzi U, Magazù S, Galtieri A and Bellocco E. Anti-aggregation properties of trehalose on heat-induced secondary structure and conformation changes of bovine serum albumin. Biophysical Chemistry 2010; 147(3): 146-152.
    Belton PS and Gil AM. IR and Raman spectroscopic studies of the interaction of trehalose with hen egg white lysozyme. Biopolymers 1994; 34(7): 957-961.
    Benaroudj N, Lee DH and Goldberg AL. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. The Journal of Biological Chemistry 2001; 276(26): 24261-24267.
    Bence NF, Sampat RM and Kopito RR. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 2001; 292(5521): 1552-1555.
    Berger Z, Ravikumar B, Menzies FM, Oroz LG, Underwood BR, Pangalos MN, Schmitt I, Wullner U, Evert BO, O’Kane CJ and Rubinsztein DC. Rapamycin alleviates toxicity of different aggregate-prone proteins. Human Molecular Genetics 2006; 15(3): 433-442.
    Chai Y, Koppenhafer SL, Bonini NM and Paulson HL. Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease. The Journal of Neuroscience 1999; 19(23): 10338-10347.
    Chen L, Cabrita GJ, Otzen DE and Melo EP. Stabilization of the ribosomal protein S6 by trehalose is counterbalanced by the formation of a putative off-pathway species. Journal of Molecular Biology 2005; 351(2): 402-416.
    Colaco C, Sen S, Thangavelu M, Pinder S and Roser B. Extraordinary stability of enzymes dried in trehalose: simplified molecular biology. Biotechnology 1992; 10(9): 1007-11.
    Crowe JH, Tablin F, Wolkers WF, Gousset K, Tsvetkova NM and Ricker J. Stabilization of membranes in human platelets freeze-dried with trehalose. Chemistry and Physics of Lipids 2003; 122(1-2): 41-52.
    Cummings CJ, Mancini MA, Antalffy B, DeFranco DB, Orr HT and Zoghbi HY. Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nature Genetics 1998; 19(2): 148-154.
    Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L and Bates GP. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 1997; 90(3): 537-548.
    DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP and Aronin N. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 1997; 277(5334): 1990-1993.
    Friedman MJ, Wang CE, Li XJ and Li S. Polyglutamine expansion reduces the association of TATA-binding protein with DNA and induces DNA binding-independent neurotoxicity. The Journal of Biological Chemistry 2008; 283(13): 8283-8290.
    Gatchel JR and Zoghbi HY. Diseases of unstable repeat expansion: mechanisms and common principles. Nature Reviews Genetics 2005; 6(10): 743-755.
    Gusella JF and MacDonald ME. Molecular genetics: unmasking polyglutamine triggers in neurodegenerative disease. Nature Reviews Drug Discovery 2000; 1(2): 109-115.
    Gunawardena S, Her LS, Brusch RG, Laymon RA, Niesman IR, Gordesky-Gold B, Sintasath L, Bonini NM and Goldstein LS. Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 2003; 40(1): 25-40.
    Heiser V, Engemann S, Bröcker W, Dunkel I, Boeddrich A, Waelter S, Nordhoff E, Lurz R, Schugardt N, Rautenberg S, Herhaus C, Barnickel G, Böttcher H, Lehrach H and Wanker EE. Identification of benzothiazoles as potential polyglutamine aggregation inhibitors of Huntington's disease by using an automated filter retardation assay. Proceedings of the National Academy of Sciences of the United States of America 2002; 99: 16400-16406.
    Holmberg CI, Staniszewski KE, Mensah KN, Matouschek A and Morimoto RI. Inefficient degradation of truncated polyglutamine proteins by the proteasome. The EMBO Journal 2004; 23(21): 4307-4318.
    Jain NK and Roy I. Effect of trehalose on protein structure. Protein Science 2009; 18(1): 24-36.
    Lee WY, Jin DK, Oh MR, Lee JE, Song SM, Lee EA, Kim GM, Chung JS and Lee KH. Frequency Analysis and Clinical Characterization of Spinocerebellar Ataxia Types 1, 2, 3, 6, and 7 in Korean Patients. Archives of Neurology 2003; 60(6): 858-863.
    Lins RD, Pereira CS and Hünenberger PH. Trehalose-protein interaction in aqueous solution. Proteins 2004; 55(1): 177-186.
    Liu R, Barkhordarian H, Emadi S, Park CB and Sierks MR. Trehalose differentially inhibits aggregation and neurotoxicity of beta amyloid 40 and 42. Neurobiology of Disease 2005; 20(1): 74-81.
    Michalik A and Van Broeckhoven C. Pathogenesis of polyglutamine disorders: aggregation revisited. Human Molecular Genetics 2003; 12 (2): R173-R186.
    Nagai Y, Onodera O, Chun J, Strittmatter WJ and Burke JR. Expanded polyglutamine domain proteins bind neurofilament and alter the neurofilament network. Experimental Neurology 1999; 155(2): 195-203.
    Nagai Y and Popiel HA. Conformational changes and aggregation of expanded polyglutamine proteins as therapeutic targets of the polyglutamine diseases: exposed β-sheet hypothesis. Current Pharmaceutical Design 2008; 14(30): 3267-3279.
    Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K, Nagashima T, Ikeda S, Tsuji S and Kanazawa I. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Human Molecular Genetics 2001; 10(14): 1441-1448.
    Nucifora FC Jr, Sasaki M, Peters MF, Huang H, Cooper JK, Yamada M, Takahashi H, Tsuji S, Troncoso J, Dawson VL, Dawson TM and Ross CA. Interference by huntingtin and atrophin-1 with CBP mediated transcription leading to cellular toxicity. Science 2001; 291(5512): 2423-2428.
    Orr HT and Zoghbi HY. Trinucleotide repeat disorders. Annual Review of Neuroscience 2007; 30: 575-621.
    Poirier MA, Li H, Macosko J, Cai S, Amzel M, Ross CA. Huntingtin spheroids and protofibrils as precursors in polyglutamine fibrilization. The Journal of Biological Chemistry 2002; 277(43): 41032-41037.
    Richards AB, Krakowka S, Dexter LB, Schmid H, Wolterbeek AP, Waalkens-Berendsen DH, Shigoyuki A and Kurimoto M. Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food and Chemical Toxicology 2002; 40(7): 871-898.
    Rodríguez-Navarro JA, Rodríguez L, Casarejos MJ, Solano RM, Gómez A, Perucho J, Cuervo AM, García de Yébenes J and Mena MA. Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation. Neurobiology of Disease 2010; 39(3): 423-438.
    Ross CA. Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington's disease and related disorders. Neuron 2002; 35(5): 819-822.
    Ross CA and Poirier MA. Protein aggregation and neurodegenerative disease. Nature Medicine 2004; 10: S10-S17.
    Sánchez I, Mahlke C and Yuan J. Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature 2003; 421(6921): 373-379.
    Schultz T, Liu J, Capasso P and de Marco A. The solubility of recombinant proteins expressed in Escherichia coli is increased by otsA an otsB co-transformation. Biochemical and Biophysical Research Communications 2007; 355(1): 234-239.
    Scherzinger E, Sittler A, Schweiger K, Heiser V, Lurz R, Hasenbank R, Bates GP, Lehrach H and Wanker EE. Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington's disease pathology. Proceedings of the National Academy of Sciences of the United States of America 1999; 96(8): 4604-4609.
    Servadio A, Koshy B, Armstrong D, Antalffy B, Orr HT and Zoghbi HY. Expression analysis of the ataxin-1 protein in tissues from normal and spinocerebellar ataxia type 1 individuals. Nature Genetics 1995; 10(1): 94-98.
    Shao J and Diamond MI. Polyglutamine diseases: emerging concepts in pathogenesis and therapy. Human Molecular Genetics 2007; 16 (2): R115-R123.
    Singer MA and Lindquist S. Multiple effects of trehalose on protein folding in vitro and in vivo. Molecular Cell 1998; 1(5): 639-648.
    Sirangelo I and Irace G. Inhibition of aggregate formation as therapeutic target in protein misfloding diseases:effect of tetracycline and trehalose. Expert Opinion on Therapeutic Targets 2010; 14(12): 1311-1321.
    Szebenyi G, Morfini GA, Babcock A, Gould M, Selkoe K, Stenoien DL, Young M, Faber PW, MacDonald ME, McPhaul MJ and Bradv ST. Neuropathogenic forms of huntingtin and androgen receptor inhibit fast axonal transport. Neuron 2003; 40(1): 41-52.
    Tanaka M, Machida Y, Niu S, Ikeda T, Jana NR, Doi H, Kurosawa M, Nekooki M and Nukina N. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nature Medicine 2004; 10(2): 148-154.
    Tanaka M, Machida Y and Nukina N. A novel therapeutic strategy for polyglutamine disease by stabilizing aggregation-prone proteins with small molecules. Journal of Molecular Medicine 2005; 83(5): 343-352.
    Taylor JP, Hardy J and Fischbeck KH. Toxic proteins in neurodegenerative disease. Science 2002; 296(5575): 1991-1995.
    Toyoshima Y, Yamada M, Onodera O, Shimohata M, Inenaga C, Fujita N, Morita M, Tsuji S and Takahashi H. SCA17 homozygote showing Huntington's disease-like phenotype. Annals of Neurology 2004; 55(2): 281-286.
    Wigley WC, Stidham RD, Smith NM, Hunt JF and Thomas PJ. Protein solubility and folding monitored in vivo by structural complementation of a genetic marker protein. Natural Biotechnology 2001; 19(2): 131-136.
    Wood NI, Pallier PN, Wanderer J and Morton AJ. Systemic administration of Congo red does not improve motor or cognitive function in R6/2 mice. Neurobiology of Disease 2007; 25(2): 342-353.
    Xie G and Timasheff SN. The thermodynamic mechanism of protein stabilization by trehalose. Biophysical Chemistry 1997; 64(1-3): 25-43.
    Zabin I and Villarejo MR. Protein complementation. Annual Review of Biochemistry 1975; 44: 296-314.
    史哲維 ( 民 98 年 )。脊髓小腦運動失調症第十七型:微生物模型之藥物篩選。國立台灣師範大學生命科學系碩士論文。

    下載圖示
    QR CODE