簡易檢索 / 詳目顯示

研究生: 施顯章
論文名稱: 創新混合動力散熱系統之建模與控制設計
Simulation and Control Design of a Novel Cooling System for Hybrid Power Sources
指導教授: 洪翊軒
Hung, Yi-Hsuan
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 101
中文關鍵詞: 冷卻系統燃料電池鋰電池雙電源系統動態
論文種類: 學術論文
相關次數: 點閱:94下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在開發一種針對燃料電池與鋰電池電源的新型混合冷卻系統,其目的在於利用混合冷卻迴路控制,將雙電源之工作溫度保持在最佳工作溫度附近,並同時節省大量之冷卻系統能源。此一冷卻系統僅具有單一可控冷卻風扇、一可控水泵和單一流量比例調節閥。
    本研究首先利用Lumped-parameter之系統動態建模方式配合熱流公式,將冷卻系統分為八段,包含:燃料電池本體與冷卻水路、鋰電池本體與冷卻水路、三段外接迴路、冷卻風扇管路等。之後針對各次系統建立一階非線性動態統御方程式並加以整合至Matlab/Simulink模擬平台;程式可做為系統設計與控制策略驗證之用。而系統由於具高非線性與不確定之特質,因此,採用模糊控制(Fuzzy Control)進行非線性能量管理。本研究最後將比對此新型冷卻系統與傳統冷卻系統之各項指標如:節能效益、匹配空間、成本之改善分析。本研究之散熱控制系統係採用單一散熱系統作溫度控制,如此較為省電,但各子系統溫度值仍無法快速有效地受到控制,故改採用智慧型模糊控制器來控制,則其結果可以快速有效地達到理想溫度值,本研究已獲得智慧型模糊控制模擬結果。

    中文摘要........................................................................................................................i 英文摘要.......................................................................................................................ii 誌謝...............................................................................................................................iv 目錄................................................................................................................................v 表目錄........................................................................................................................viii 圖目錄..........................................................................................................................xi 第一章 序論..................................................................................................................1 1.1研究背景..........................................................................................................1 1.2研究動機與目的..............................................................................................1 1.3文獻回顧..........................................................................................................2 1.3.1燃料電池簡介.........................................................................................2 1.3.2質子交換模燃料電池熱分析.................................................................5 1.3.3鋰電池簡介.............................................................................................7 1.3.4鋰電池熱分析.......................................................................................10 1.4研究問題........................................................................................................12 1.5名詞解釋........................................................................................................12 1.6 本研究內容架構............................................................................................13 第二章 基本熱動態方程式推導................................................................................15 2.1基本lumped-parameter熱動態建模..............................................................15 2.2混合散熱系統數學模型建立........................................................................16 第三章 新型混合動力散熱系統動態分析................................................................24 3.1新型混合散熱系統架構................................................................................27 3.2 燃料電池系統...............................................................................................29 3.3 鋰電池系統...................................................................................................32 3.4 散熱泵與散熱風扇.......................................................................................34 3.5 電控比例閥與散熱管路...............................................................................35 3.6系統線性化....................................................................................................36 第四章 流量管理與控制............................................................................................40 4.1 規則庫控制...................................................................................................40 4.2 模糊控制.......................................................................................................41 4.2.1模糊控制概述.....................................................................................41 4.2.2模糊控制器的基本結構.....................................................................43 4.2.3模糊控制的特點.................................................................................45 4.2.4模糊邏輯控制系統的建模.................................................................47 第五章模擬結果與討論..............................................................................................56 5.1 時域動態分析 (3600sec.的溫度追蹤) .......................................................56 5.1.1燃料電池動態模式測試之模擬結果.................................................56 5.1.2鋰電池動態模式測試之模擬結果.....................................................61 5.1.3模糊控制.............................................................................................64 5.2 頻域分析.......................................................................................................68 5.2.1根軌跡圖、波德圖.............................................................................68 5.2.2倪奎士軌跡圖.....................................................................................73 第六章 效益分析........................................................................................................75 6.1混合散熱系統效益分析................................................................................75 6.2 混合散熱系統的準則...................................................................................75 6.3案例分析........................................................................................................78 第七章 結論與未來工作............................................................................................81 7.1 結論...............................................................................................................81 7.1.1 混合散熱系統動態之模擬結果........................................................81 7.1.2 智慧型模糊控制之模擬結果............................................................83 7.2 未來工作.......................................................................................................84 參考文獻......................................................................................................................88

    [1] F. P. Incropera and D. P. DeWitt, Introduction to Heat Transfer, 4th ed., John Wiley & Sons, Inc., New York, 2002.
    [2] Y. A. Çengel, Heat Transfer: A Practical Approach, 2nd ed., McGraw Hill, New York, 2003.
    [3] S. Um, C. Y. Wang, and K. S. Chen, “Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells”, Journal of Electrochem. Soc., 147(12):4485–4493, 2000.
    [4] B. Thoben and A. Siebke, “Influence of different gas diffusion layers on the water management of the PEFC cathod”e, Journal of New Mater. Electrochem. Syst. 7, 2004.
    [5] P. Zhou, C. W. Wu, and G. J. Ma, “Contact resistance prediction and structure optimization of bipolar plates”, Journal of Power Sources, vol. 159, 2006.
    [6] G. H. Guvelioglu and H. G. Stenger, “Flow rate and humidification effectc on a PEM fuel cell performance and operation”, Journal of Power Sources, vol.163, pp.882-891, 2007.
    [7] M. V. Williams, H. R. Kunz, and J. M. Fenton, “Operation of Nafion based PEM fuel cells with no external humidification: influence of operating conditions and gas diffusion layers”, Journal of Power Sources, vol.135, pp.122-134, 2004.
    [8] F. Barbir, H. Gorgun, and X. Wang, “Relationship between pressure drop and cell resistance as a diagnostic tool for PEM fuel cells”, Journal of Power Sources, vol. 141, pp.96-101, 2005.
    [9] K. Ito, K. Ashikaga, H. Masuda, T. Oshima, Y. Kakimoto, and K. Sasaki, “Estimation of flooding in PEMFC gas diffusion layer by differential pressure measurement”, Journal of Power Sources, vol. 175, pp.732-738, 2008.
    [10] C. Y. Wen and G. W. Huang, “Application of a thermally conductive pyrolytic graphite sheet to thermal management of a PEM fuel cell”, Journal of Power Sources, vol.178, pp.132-140, 2008.
    [11] Y. Zong, B. Zhou, and W. A. Sobiesiak, “Water and thermal management in a single PEM fuel cell with non-uniform stack temperature”, Journal of Power Sources, vol.161, pp.143-159, 2006.
    [12] P. T. Nguyen, T. Berning1, and N. Djilali, “Computational model of a PEM fuel cell with serpentine gas flow channels”, Journal of Power Sources, vol.130, pp.149-157, 2004.
    [13] G. N. Ellison, Thermal Computations for Electronic Equipment, Van Nostrand Reinhold, New York, 1969.
    [14] G. G. Botte, V. R. Subramanian, and R. E. White, Journal of Electrochem. Acta. 45, 2595 .Thermal Modeling, 2000.
    [15] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, New York 1980.
    [16] D. Chu and C. R. Jiang, “Comparative studies of polymer electrolyte membrane fuel cell stack and single cell”, Journal of Power Sources, vol.80, pp.226-234, 1999.
    [17] S. Giddey, F. T. Ciacchi, and S. P. S. Baswal, “Design, assembly and operation of polymer electrolyte membrane fuel cell stacks to 1 KW capacity”, Journal of Power Sources, vol.125, pp.155-165, 2003.
    [18] Y. Chen and J. W. Evans, "Three-Dimensional Thermal Modeling of Lithium-Polymer Batteries under Galvanostatic Discharge and Dynamic Power Profile", Journal of Electrochem.Soc., vol.141, pp.2947, 1994.
    [19] M. W. Verbrugge, ‘‘Three-Dimensional Temperature and Current Distribution in a Battery Module”, AIChE Journal, vol. 41, pp.1550, 1995.
    [20] C. R. Pals and J. Newman, ‘Thermal Modeling of the Lithium Polymer Battery: 11. Temperature Profiles in a Cell Stack,” Journal of Electrochem.Soc., vol.142, pp.3282, 1995.
    [21] A Simplified Version of the Federal Urban Driving Schedule for Electric Vehicle Buttery Testing. Electric & Hybrid Propulsion Battery Test Working Force, EG&G, Idaho, Inc., DOE/ID-10146, 1988.
    [22] Electric Vehicle Battery Test Procedures Manual, United States Advanced Battery Consortium. July, 1994.
    [23] P. A. Nelson, V. S. Battaglia, and G. L. Henriksen, “Thermal Control of Electric Vehicle Batteries”, The American Society of Mechanical Engineers, Vol. 3, pp.267-270, 1995.
    [24] D. F. Gosden, “Battery Requirements for Electric Vehicles,” Journal of Power Sources, pp.45-61, 1993.
    [25] R. Jiang and D. Chu, “Stack design and performance of polymer electrolyte membrane fuel cells”, Journal of Power Sources, vol. 93, pp.25-31, 2001.
    [26] D. Chu and R. Jiang, “Performance of polymer electrolyte membrane fuel cell (PEMFC) stacks Part I. Evaluation and simulation of an air-breathing PEMFC stack”, Journal of Power Sources, vol. 83, pp.128-133, 1999.
    [27] A. Hakenjos, H. Muenter, U. Wittstadt, and C. Hebling, “A PEM fuel cell for combined measurement of current and temperature distribution, and flow field flooding”, Journal of Power Sources, vol.131, pp.213-216, 2004.
    [28] J. M. Andu´jar and F. Segura, “Fuel cells: History and updating. A walk along two centuries”, Renewable and Sustainable Energy Reviews, vol.13, pp.2309–2322, 2009.
    [29] Y. Shan and S. Y. Choe, “A high dynamic PEM fuel cell model with temperature effects”, Journal of Power Sources, vol.145, pp. 30–39, 2005.
    [30] Y. H. Hung, P. H. Lin, C. H. Wu, and C. W. Hong, “Real-time dynamic modeling of hydrogen PEMFCs”, Journal of the Franklin Institute, vol. 345, pp. 182–203, 2008.
    [31] X. Zhang, J. Guo, and J. Chen, “The parametric optimum analysis of a proton exchange membrane (PEM) fuel cell and its load matching”, Journal of Applied Energy, vol. 35, pp. 5294-5299, 2010.
    [32] M.Funabashi, T. Aoki, M. Yahiro, and H. Inoue, “A fuzzy model based control scheme and its application to a road tunnel ventilation system”, Proc. IECON’91 Internat. Conf. on Industrial Electrics, Control and Instrumentation, vol. 2, pp. 1596-1601, 1991.
    [33] P. H. Chen, J. H. Lai, and C. T. Lin, “Application of Fuzzy Control to a Road Tunnel Ventilation System”, Fuzzy Sets and Systems, Vol. 100, pp. 9-28, 1998.
    [34] “Fuzzy Logic Toolbox User’s Guide”, The MathWorks, Inc., 1999.
    [35] M. B. Histland and D. G. Alciatore, Mechatronics and Measurement Systems, McGraw-Hill, Inc., 1996.
    [36] D. K. Miu, Mechatronics: Electromechanics and Contromechanics, New York, Springer-Verlag, 1993.
    [37] J. R. Hewit, Mechatronics, New York, Springer-Verlag, 1993.
    [38] M. K. Masten, “An industrial challenge to control system educators”, IFAC Conf. Advances in Control Education, Boston, MA, pp. 1-6, June 1991.
    [39] B. K. Bose, “Power electronics - an emerging technology”, IEEE Trans. on Ind. Electron., vol. 36, no. 3, pp. 404-412, Aug. 1989.
    [40] B. K. Bose, “Motion control technology - present and future”, IEEE Trans. Ind. Appli., vol. 21, pp. 1337-1342, Nov./Dec. 1985.
    [41] G. F. Franklin, J. D. Powell, and E. N. Abbas, Feedback Control of Dynamic Systems. Addison Wesley, 1994.
    [42] B.C. Kuo, Automatic Control Systems. Prentice-Hall, 1911.
    [43] Y. Tang, W. Yuan, M. Pan, Z. Li, G.. Chen, and Y. Li, “Experimental investigation of dynamic performance and transient responses of a kW-class PEM fuel cell stack under various load changes”, Journal of Applied Energy, vol. 87, pp. 1410-1417, 2010.
    [44] D. H. Jeon, K. N. Kim, S. M. Baek, and J. H. Nam, “The effect of relative humidity of the cathode on the performance and the uniformity of PEM fuel cells”, International Journal of Hydrogen Energy, vol. 35, pp. 5043-5052, 2011.
    [45] A. Kopanidis, A. Theodorakakos, M. Gavaises, and D. Bouris, “Pore scale 3D modelling of heat and mass transfer in the gas diffusion layer and cathode channel of a PEM fuel cell”, International Journal of Thermal Sciences, vol. 50, pp. 456-467, 2011.

    下載圖示
    QR CODE