簡易檢索 / 詳目顯示

研究生: 錢彥興
Yen-Hsing Chien
論文名稱: 鋁掺入極薄氧化鉿高介電係數閘極介電層之效應
The Effect of Aluminum (Al) Incorporation in Ultra-Thin HfO2 High-k Gate Dielectrics
指導教授: 劉傳璽
Liu, Chuan-Hsi
阮弼群
Juan, Pi-Chun
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 95
中文關鍵詞: 高介電係數氧化鋁鉿共濺鍍技術
英文關鍵詞: High-k, HfAlO, co-sputtering technique
論文種類: 學術論文
相關次數: 點閱:238下載:39
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化鉿薄膜為一良好的高介電係數材料,適合使用在MOS元件,但相較於其他介電材料,結晶溫度過低為其一大缺點,本論文主要將氧化鋁鉿材料取代傳統MOS元件上之閘極氧化層,利用摻雜鋁元素,製備氧化鋁鉿薄膜,以提高氧化鉿薄膜的結晶溫度,並針對其電性、物性做分析與探討。
    本研究使用射頻共濺鍍技術,在常溫、充滿氬氣的真空腔體,將高純度的氧化鉿及鋁之靶材,濺射沉積在矽基板上,形成一層厚度7 奈米的氧化鋁鉿薄膜,之後在充滿氮氣的真空腔體中,分別執行650℃、750℃、850℃的快速熱退火,然後鍍上鋁製成閘極電極;最後再利用電流-電壓、電壓-電壓量測儀、穿透式電子顯微鏡、能量散佈分析儀、原子力顯微鏡、X光繞射儀、橢圓測厚儀、X光反射儀等,分析探討氧化鋁鉿薄膜的電性及物性。
    實驗結果顯示,氧化鋁鉿薄膜擁有良好的結晶溫度、介電係數、及閘極漏電流,在750℃的快速熱退火後,得到的相對介電係數為14.6,閘極漏電流方面,閘極注入電壓為-1 V時,漏電流大小約為10-6 ~ 10-7 A/cm2,基板注入電壓為1 V時,漏電流大小約在10-5 ~ 10-6 A/cm2,漏電流機制符合蕭基發射,其鋁與介電層間、介電層與矽基板間之蕭基能障分別為0.48 eV及0.72 eV。

    HfO2 thin film is a good high-k gate dielectric material for MOS devices, but one main drawback is its relatively low crystallization temperature. In this thesis, the gate dielectric of MOS devices is replaced by HfAlO. Aluminum (Al) has been introduced into HfO2 thin films to form HfAlO films in order to raise the crystallization temperature of HfO2. The electrical and physical characteristics of the MOS devices with HfAlO gate dielectrics were analyzed and discussed in this study.
    The high-k HfAlO thin films (7 nm) were deposited by RF co-sputtering technique using highly pure HfO2 and Al as the sputtering targets in Ar ambient at room temperature, followed by RTA at 650, 750 or 850 ℃ in N2 ambient. Al was then formed as the gate electrode. The electrical and physical properties of the capacitors were evaluated through I-V (current-voltage), C-V (capacitance-voltage), TEM, EDS, AFM, XRD, ellipsometer, and XRR.
    The results revealed that the HfAlO thin films have satisfactory crystallization temperature, dielectric constant, and gate leakage current. The relative dielectric constant of the HfAlO film is 14.6 after 750℃ rapid thermal annealing. The gate leakage current is 10-6-10-7 or 10-5-10-6 A/cm2 at a gate bias of 1 or -1 V, respectively. Moreover, the Schottky barrier height at the Al/HfAlO interface or HfAlO/p-Si interface is about 0.48 or 0.72 eV, respectively.

    第一章 緒論 1 1-1 金氧半場效電晶體 1 1-2 金氧半電容器 1 1-3 高介電係數材料之閘極介電層 1 1-4 高介電係數介電層電容器製備 2 1-5 本論文研究方向 2 第二章 文獻探討 3 2-1 金氧半場效電晶體 3 2-1-1電晶體的結構 4 2-1-2 電晶體的運作 5 2-1-3 電晶體的性能 6 2-2 金氧半電容器 8 2-2-1 金氧半電容器的結構 8 2-2-2金氧半電容器的運作 9 2-2-3 MOS電容器的介面電荷陷阱 10 2-3 MOS電容器之漏電流機制 13 2-3-1直接穿隧 14 2-3-2 傅勒-諾德翰穿隧 15 2-3-3 蕭基發射 16 2-3-4 普爾-夫倫克爾發射 17 2-4 高介電係數閘極氧化層之電容器 (一) 20 2-4-1 介電係數 20 2-4-2 高介電係數 22 2-5 高介電係數閘極氧化層 (二) 23 2-5-1 高介電係數材料 23 2-5-2 高介電係數材料Al2O3 25 2-5-3 高介電係數材料La2O3 27 2-5-4 高介電係數材料Y2O3 27 2-5-5 高介電係數材料CeO2 30 2-5-6 高介電係數材料ZrO2 31 2-5-7 高介電係數材料HfO2 31 第三章 實驗設計 36 3-1 研究動機 36 3-2 氧化鋁鉿薄膜電容器實驗流程 36 3-3 高介電電容器之製備與機台介紹 40 3-3-1 基板準備 40 3-3-2 薄膜濺鍍沉積 40 3-3-3 熱退火處理 45 3-3-4 鋁電極製作 47 3-4 實驗量測儀器原理 47 3-4-1 X光繞射儀 47 3-4-2 X光反射率 49 3-4-3 橢圓偏光儀 50 3-4-4 原子力顯微鏡 51 3-4-5 穿透式電子顯微鏡 52 3-4-6 電容器的電性量測 52 第四章 結果與討論 53 4-1 HfAlO薄膜基本性質量測分析 53 4-1-1 X光繞射量測分析 53 4-1-2 X光反射率量測分析 60 4-1-3 橢圓偏光儀量測分析 64 4-1-4 原子力顯微鏡量測分析 65 4-1-5 穿透式電子顯微鏡及能量散佈分析儀分析 69 4-1-6 HfAlO電性量測:電容-電壓 71 4-1-7 HfAlO電性量測:電流-電壓 75 4-1-8 HfAlO電性量測:漏電流傳導機制--蕭基發射 78 第五章 結論與未來展望 86 5-1 Al/HfAlO/Si電容器的物性與電性 86 5-1-1 Al/HfAlO/Si電容器的物性 86 5-1-2 Al/HfAlO/Si電容器的電性 87 5-1-3 Al/HfAlO/Si電容器實驗總結 88 5-2 未來展望 88 參考文獻 90

    [1] J. Bardeen and W. H. Brattrain, “A semi-conductor triode”, Physical Review 74, 230 (1948).
    [2] W. Shockley, “The theory of p-n junction in semiconductors and p-n junction transistors”, Bell System Technical Journal 28, 435 (1949).
    [3] D. Kahng and M. M. Atalla, “Silicon dioxide surface device”, IRE Device Research Conference, Pittsburgh (1960).
    [4] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed., Wiley, New York (2007).
    [5] G. E. Moore, The Experts Look Ahead 38, 8 (1965).
    [6] 劉傳璽、陳進來,”半導體物理元件與製程-理論與實務”,五南文化出版社。
    [7] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k gate dielectrics: current status and materials properties considerations”, Journal of Applied Physics 89, 5243 (2001).
    [8] H. S. Momose, M. Ono, T. Yoshitomi, T. Ohguro, S. Nakamura, M. Saito, and H. Iwai, “1.5 nm direct-tunneling gate oxide Si MOSFET’s”, IEEE Transactions On Electron Devices 43, 1233 (1996).
    [9] C. Mahata, M. K. Bera, P. K. Bose, and C. K. Maiti, “Charge trapping characteristics in high-k gate dielectrics on germanium”, Thin Solid Films 517, 163 (2008).
    [10] N. Zha, M. Xu, D. W. Zhang, and F. Lu, “A study of interface charateristics in HfAlO/p-Si by deep level transient spectroscopy”, Applied Surface Science 254, 7512 (2008).
    [11] W. G. Pfann and C. G. B. Garrett, “Semiconductor varactors using surface space-charge layers”, Proc. IRE 47, 2011 (1959).
    [12] B. E. Deal, M. Sklar, A. S. Grove, and E. H. Snow, “Characteristics of the surface-state charge of thermally oxidized silicon”, Journal of The Electrochemical Society 114, 266 (1967).
    [13] C. H. Choi, K. H. Oh, J. S. Goo, Z. Yu, and R. W. Dutton, “Direct tunneling current model for circuit simulation”, IEDM Technical Digest, 735 (1999).
    [14] F. C. Chiu, S. K. Fan, K. C. Tai, and J. Y. Lee,” Electrical characterization of tunnel insulator in metal insulator tunnel transistors fabricated by atomic force microscope”, Applied Physics Letters 87, 243506-1 (2005).
    [15] S. Pan, S. J. Ding, Y. Huang, Y. J. Huang, D. W. Zhang, L. K. Wang, and R. Liu, “High-temperature conduction behaviors of HfO2 /TaN-based metal-insulator-metal capacitors”, Journal of Applied Physics 102, 073706-1 (2007).
    [16] C. H. Liu, H. W. Chen, S. Y. Chen, H. S. Huang, and L. W. Cheng, ”Current conduction of 0.72 nm equivalent-oxide-thickness LaO/HfO2 stacked gate dielectrics”, Applied Physics Letters 95, 012103 (2009).
    [17] W. F. Smith (劉品均、施佑蓉譯) (2005),”材料科學概論”,麥格羅希爾。
    [18] Y. Li, J. Zhu, H.Liu, and Z. Liu, “Fabrication and characterization of Zr-rich Zr-aluminate films for high-k gate dielectric applications”, Microelectronic Engineering 83, 1908 (2006).
    [19] P. W. Peacock and J. Robertson, “Behavior of hydrogen in high dielectric constant oxide gate insulators”, Applied Physics Letters 83, 2025 (2003).
    [20] A. Chin, Y. H. Wu, S. B. Chen, C. C. Liao, and W. J. Chen, “High quality La203 and A12O3 gate dielectrics with equivalent oxide thickness 5-10 Å”, Technology Digest VLSI Symposium, 16 (2000).
    [21] J. Robertson, “Electronic structure and band offsets of high-dielectric-constant gate oxides”, Materials Research Society 27, 217 (2002).
    [22] Y. Xuan, H. C. Lin, and P. D. Ye, “Capacitance-voltage studies on enhancement-mode InGaAs metal-oxide-semiconductor field-effect transistor using atomic-layer-deposited Al2O3 gate dielectric”, Applied Physics Letters 88, 263518 (2006).
    [23] J. H. Lee, K. Koh, N. I. Lee, M. H. Cho, Y. K. Kim, J. S . Jeon,K. H. Cho, H. S . Shin, M. H. Kim, K. Fujihara, H. K. Kang, and J. T. Moon, “Effect of polysilicon gate on the flatband voltage shift and mobility degradation for ALD-Al2O3 gate dielectric”, IEDM Technical Digest, 645 (2000).
    [24] A. Chin, C. C. Liao, C. H. Lu, W. J. Chen, and C. Tsai, “Device and reliability of high-k Al2O3, gate dielectric with good mobility and low Dit”, Technology Digest VLSI Symposium, 135 (1999).
    [25] D. A. Buchanan, E. P. Gusev, E. Cartier, H. Okorn-Schmidt, K. Rim, M. A. Gribelyuk, A. Mocuta, A. Ajmera, M. Copel, S. Guha, N.Bojarczuk, A. Callegari, C. DEmic, P. Kozlowski, K. Chan, R. J. Fleming, P.C. Jamison, J. Brown, and R. Arndt, “80 nm poly-silicon gated n-FETs with ultra-thin Al2O3 gate dielectric for ULSI applications”, IEDM Technical Digest, 223 (2000).
    [26] A. Chin, Y. H. Wu, S. B. Chen, C. C. Liao, and W. J. Chen, “High quality La2O3 and A12O3 gate dielectrics with equivalent oxide thickness 5-10 Å”, Technology Digest VLSI Symposium, 16 (2000).
    [27] E. Miranda and H. Iwai, “Modeling of the leakage current in ultrathin La2O3 films using a generalized power law equation”, Proceedings of 13th IPFA (2006).
    [28] S. Ohmi, C. Kobayashi, K. Aizawa, S. Yamamoto, E. Tokumitsu, H. Ishiwara, and H. Iwai, “High quality ultrathin La2O3 films for High-k gate insulator”, ESSDERC, 235 (2001).
    [29] J. Kwo, M. Hong, A. R. Kortan, K. T. Queeney, Y. J. Chabal, J. P. Mannaerts, T. Boone, J. J. Krajewski, A. M. Sergent, and J. M. Rosamilia, “High ε gate dielectrics Gd2O3 and Y2O3 for silicon”, Applied Physics Letters 77, 130 (2000).
    [30] C. H. Liu, P. C. Juan, C. P. Cheng, G. T. Lai, H. Lee, Y. K. Chen, Y. W. Liu, and C. W. Hsu, “Structural properties of ultra-thin Y2O3 gate dielectrics studied by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS)”, IEEE International Nano Electronics Conference, 1256 (2010).
    [31] M. H. Tang, Y. C. Zhou, X. J. Zheng, Z. Yan, C. P. Cheng, Z. Ye, and Z. S. Hu, “Characterization of ultra-thin Y2O3 films as insulator of MFISFET structure”, Transactions of Nonferrous Metals Society of China 16, 163 (2006).
    [32] J. C. Wang, K. C. Chiang, T. F. Lei, and C. L. Lee, “Characteristics improvement and carrier transportation of CeO2 gate dielectrics with rapid thermal annealing”, Proceeding of 11th The International Project Finance Association, 161 (2004).
    [33] J. H. Yoo, S. W. Nam, S. K. Kang, Y. H. Jeong, D. H. Ko, J. H. Ku, and H. J. Lee, “A study on the microstructure and electrical properties of CeO2 thin films for gate dielectric applications”, Microelectronic Engineering 56, 187 (2001).
    [34] C. H. Lee, H. F. Luan, W. P. Bai, S. J. Lee, T. S. Jeon, Y. Senzaki, D. Roberts, and D. L. Kwong, “MOS characteristics of ultra thin rapid thermal CVD ZrO2 and Zr silicate gate dielectrics”, IEDM Technical Digest, 27 (2000).
    [35] Y. Li, J. Zhu, H. Liu, and Z. Liu, “Fabrication and characterization of Zr-rich Zr-aluminum films for high-k gate dielectric applications”, Microelectronic Engineering 83, 1905 (2006).
    [36] W. J. Qi, R. Nieh, B. H. Lee, L. Kang, Y. Jeon, and J. C. Lee, “Electrical and reliability characteristics of ZrO2 deposited directlyon Si for gate dielectric application”, Applied Surface Science 77, 3269 (2000).
    [37] R. Mahapatra, G. S. Kar, C. B. Samantaray, A. Dhar, D. Bhattacharya, and S. K. Ray, “ZrO2 as a high-k dielectric for strained SiGe MOS devices”, Bulletin of Materials Science 25, 455 (2002).
    [38] S. Chatterjee, Y. Kuo, J. Lu, J. Y. Tewg, and P. Majhi, “Electrical reliability aspects of HfO2 high-k gate dielectrics with TaN metal gate electrodes under constant voltage stress”, Microelectronics Reliability 46, 69 (2006).
    [39] W. Zhu, T. P. Ma, T. Tamagawa, Y.Di, J. Kim, R. Carmthers, M. Gibson, and T. Furukawa, “HfO2 and HfAlO for CMOS: thermal stability and current transport”, IEDM Technical Digest, 463 (2001).
    [40] G. He, M. Liu, L. Q. Zhu, M. Chang, Q. Fang, and L. D. Zhang, “Effect of postdeposition annealing on the thermal stability and structural characteristics of sputtered HfO2 films on Si (100)”, Surface Science 576, 67 (2005).
    [41] J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices”, Journal of Vacuum Science & Technology B 18, 1785 (2000).
    [42] H. Iwai, S. Ohmi, S. Akama, C. Ohshima, A. Kikuchi, I. Kashiwagi, J. Taguchi, H. Yamamoto, J. Tonotani, Y. Kim, I. Ueda, A. Kuriyama, and Y. Yoshihara, “Advanced gate dielectric materials for sub 100 nm CMOS”, IEDM Technical Digest, 625 (2002).
    [43] L. Kang, B. H. Lee, W. J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, and J. C. Lee, “Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric”, IEEE Electron Device Letters 21, 181 (2000).
    [44] C. H. Liu, H. W. Chen, S. Y. Chen, H. S. Huang, and L. W. Cheng, “Current conduction of 0.72 nm equivalent-oxide-thickness LaO/HfO2 stacked gate dielectrics”, Applied Physics Letters 95, 012103 (2009).
    [45] F. C. Chiu, “Interface characterization and carrier transportation in metal/HfO2/siliconstructure”, Journal of Applied Physics 100, 114102 (2006).
    [46] 白木靖寬、吉田貞史,“薄膜工程學”,全華科技圖書股份有限公司,(2006)。

    下載圖示
    QR CODE